adf
글쓴이: superchangho / 작성시간: 금, 2006/02/03 - 11:19오전
#include <linux/config.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/version.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ioport.h> #include <asm/irq.h> #include <asm/hardware.h> #include <asm/io.h> #include <asm/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> // Added BSt #include <asm/mach-types.h> #ifdef CONFIG_SA1100_CERF #include "asm/arch/cerf.h" #endif #include "cs8900.h" //#define FULL_DUPLEX //#define DEBUG typedef struct { struct net_device_stats stats; u16 txlen; int char_devnum; spinlock_t lock; } cs8900_t; int cs8900_probe (struct net_device *dev); static struct net_device cs8900_dev = { init: cs8900_probe }; /* * There seems to be no way to determine the exact size of the eeprom, * so we use the largest size. * FIXME: Verify it's safe to read/write past the end of a 64/128 * byte eeprom. * * Possible eeprom sizes: * Cx46 - 64 bytes * Cx56 - 128 bytes * Cx66 - 256 bytes */ #define MAX_EEPROM_SIZE 256 static int cs8900_eeprom_fopen(struct inode *inode, struct file *file); static int cs8900_eeprom_frelease(struct inode *inode, struct file *file); static loff_t cs8900_eeprom_fllseek(struct file * file,loff_t offset, int flags); static ssize_t cs8900_eeprom_fread(struct file *file, char *buf, size_t count, loff_t *f_pos); static ssize_t cs8900_eeprom_fwrite(struct file *file, const char *buf, size_t count, loff_t *f_pos); static struct file_operations cs8900_eeprom_fops = { owner: THIS_MODULE, open: cs8900_eeprom_fopen, release: cs8900_eeprom_frelease, llseek: cs8900_eeprom_fllseek, read: cs8900_eeprom_fread, write: cs8900_eeprom_fwrite, }; static u16 cs8900_eeprom_cache[MAX_EEPROM_SIZE/2]; /* * I/O routines */ static inline u16 cs8900_read (struct net_device *dev,u16 reg) { outw (reg,dev->base_addr + PP_Address); return (inw (dev->base_addr + PP_Data)); } static inline void cs8900_write (struct net_device *dev,u16 reg,u16 value) { outw (reg,dev->base_addr + PP_Address); outw (value,dev->base_addr + PP_Data); } static inline void cs8900_set (struct net_device *dev,u16 reg,u16 value) { cs8900_write (dev,reg,cs8900_read (dev,reg) | value); } static inline void cs8900_clear (struct net_device *dev,u16 reg,u16 value) { cs8900_write (dev,reg,cs8900_read (dev,reg) & ~value); } static inline void cs8900_frame_read (struct net_device *dev,struct sk_buff *skb,u16 length) { insw (dev->base_addr,skb_put (skb,length),(length + 1) / 2); } static inline void cs8900_frame_write (struct net_device *dev,struct sk_buff *skb) { outsw (dev->base_addr,skb->data,(skb->len + 1) / 2); } /* * EEPROM I/O routines */ static int cs8900_eeprom_wait (struct net_device *dev) { int i; for (i = 0; i < 3000; i++) { if (!(cs8900_read (dev,PP_SelfST) & SIBUSY)) return (0); udelay (1); } return (-1); } static int cs8900_eeprom_read (struct net_device *dev,u16 *value,u16 offset) { if (cs8900_eeprom_wait (dev) < 0) return (-1); cs8900_write (dev,PP_EEPROMCommand,offset | EEReadRegister); if (cs8900_eeprom_wait (dev) < 0) return (-1); *value = cs8900_read (dev,PP_EEPROMData); return (0); } static int cs8900_eeprom_write (struct net_device *dev,u16 *value,u16 offset) { cs8900_eeprom_wait(dev); cs8900_write(dev, PP_EEPROMCommand, (EEWriteEnable)); cs8900_eeprom_wait(dev); cs8900_write(dev, PP_EEPROMData, *value); cs8900_eeprom_wait(dev); cs8900_write(dev, PP_EEPROMCommand, (offset | EEWriteRegister)); cs8900_eeprom_wait(dev); cs8900_write(dev, PP_EEPROMCommand, (EEWriteDisable)); cs8900_eeprom_wait(dev); return 0; } /* * Debugging functions */ #ifdef DEBUG static inline int printable (int c) { return ((c >= 32 && c <= 126) || (c >= 174 && c <= 223) || (c >= 242 && c <= 243) || (c >= 252 && c <= 253)); } static void dump16 (struct net_device *dev,const u8 *s,size_t len) { int i; char str[128]; if (!len) return; *str = '\0'; for (i = 0; i < len; i++) { if (i && !(i % 4)) strcat (str," "); sprintf (str,"%s%.2x ",str,s[i]); } for ( ; i < 16; i++) { if (i && !(i % 4)) strcat (str," "); strcat (str," "); } strcat (str," "); for (i = 0; i < len; i++) sprintf (str,"%s%c",str,printable (s[i]) ? s[i] : '.'); printk (KERN_DEBUG "%s: %s\n",dev->name,str); } static void hexdump (struct net_device *dev,const void *ptr,size_t size) { const u8 *s = (u8 *) ptr; int i; for (i = 0; i < size / 16; i++, s += 16) dump16 (dev,s,16); dump16 (dev,s,size % 16); } static void dump_packet (struct net_device *dev,struct sk_buff *skb,const char *type) { printk (KERN_INFO "%s: %s %d byte frame %.2x:%.2x:%.2x:%.2x:%.2x:%.2x to %.2x:%.2x:%.2x:%.2x:%.2x:%.2x type %.4x\n", dev->name, type, skb->len, skb->data[0],skb->data[1],skb->data[2],skb->data[3],skb->data[4],skb->data[5], skb->data[6],skb->data[7],skb->data[8],skb->data[9],skb->data[10],skb->data[11], (skb->data[12] << 8) | skb->data[13]); if (skb->len < 0x100) hexdump (dev,skb->data,skb->len); } static void eepromdump( struct net_device *dev) { u16 buf[0x80]; u16 i; int count; int total; if( cs8900_read( dev, PP_SelfST) & EEPROMpresent) { printk (KERN_INFO "%s: EEPROM present\n",dev->name); } else { printk (KERN_INFO "%s: NO EEPROM present\n",dev->name); return; } if( cs8900_read( dev, PP_SelfST) & EEPROMOK) { printk (KERN_INFO "%s: EEPROM OK\n",dev->name); } else { printk (KERN_INFO "%s: EEPROM checksum mismatch - fixing...\n",dev->name); } printk (KERN_INFO "%s: Hexdump\n",dev->name); for( i=0; i<0x80; i++) { cs8900_eeprom_read( dev, &buf[i], i); } hexdump( dev, buf, 0x100); if( buf[0] & 0x0100) { printk (KERN_INFO "%s: non-sequential EEPROM\n",dev->name); } else { printk (KERN_INFO "%s: sequential EEPROM\n",dev->name); } if( (buf[0] & 0xe000) == 0xa000) { printk (KERN_INFO "%s: Found reset configuration block\n",dev->name); } else { printk (KERN_INFO "%s: Reset configuration block not found\n",dev->name); return; } count = 2; total = buf[0] & 0xff; printk (KERN_INFO "%s: Reset configuration block size = %d bytes\n",dev->name, total); while( count < total) { int groupsize = (buf[count/2] >> 12) + 1; int basereg = (buf[count/2] &0x1ff); printk (KERN_INFO "%s: Group size = %d words\n",dev->name, groupsize); printk (KERN_INFO "%s: Base register = %x\n",dev->name, basereg); count += (groupsize + 1)*2; } } #endif /* #ifdef DEBUG */ /* * Driver functions */ static void cs8900_receive (struct net_device *dev) { cs8900_t *priv = (cs8900_t *) dev->priv; struct sk_buff *skb; u16 status,length; status = cs8900_read (dev,PP_RxStatus); length = cs8900_read (dev,PP_RxLength); if (!(status & RxOK)) { priv->stats.rx_errors++; if ((status & (Runt | Extradata))) priv->stats.rx_length_errors++; if ((status & CRCerror)) priv->stats.rx_crc_errors++; return; } if ((skb = dev_alloc_skb (length + 4)) == NULL) { priv->stats.rx_dropped++; return; } skb->dev = dev; skb_reserve (skb,2); cs8900_frame_read (dev,skb,length); #ifdef FULL_DUPLEX dump_packet (dev,skb,"recv"); #endif /* #ifdef FULL_DUPLEX */ skb->protocol = eth_type_trans (skb,dev); netif_rx (skb); dev->last_rx = jiffies; priv->stats.rx_packets++; priv->stats.rx_bytes += length; } static int cs8900_send_start (struct sk_buff *skb,struct net_device *dev) { cs8900_t *priv = (cs8900_t *) dev->priv; u16 status; spin_lock_irq(&priv->lock); netif_stop_queue (dev); cs8900_write (dev,PP_TxCMD,TxStart (After5)); cs8900_write (dev,PP_TxLength,skb->len); status = cs8900_read (dev,PP_BusST); if ((status & TxBidErr)) { spin_unlock_irq(&priv->lock); printk (KERN_WARNING "%s: Invalid frame size %d!\n",dev->name,skb->len); priv->stats.tx_errors++; priv->stats.tx_aborted_errors++; priv->txlen = 0; return (1); } if (!(status & Rdy4TxNOW)) { spin_unlock_irq(&priv->lock); printk (KERN_WARNING "%s: Transmit buffer not free!\n",dev->name); priv->stats.tx_errors++; priv->txlen = 0; /* FIXME: store skb and send it in interrupt handler */ return (1); } cs8900_frame_write (dev,skb); spin_unlock_irq(&priv->lock); #ifdef DEBUG dump_packet (dev,skb,"send"); #endif /* #ifdef DEBUG */ dev->trans_start = jiffies; dev_kfree_skb (skb); priv->txlen = skb->len; return (0); } static void cs8900_interrupt (int irq,void *id,struct pt_regs *regs) { struct net_device *dev = (struct net_device *) id; cs8900_t *priv; u16 status; if (dev->priv == NULL) { printk (KERN_WARNING "%s: irq %d for unknown device.\n",dev->name,irq); return; } priv = (cs8900_t *) dev->priv; while ((status = cs8900_read (dev,PP_ISQ))) { switch (RegNum (status)) { case RxEvent: cs8900_receive (dev); break; case TxEvent: priv->stats.collisions += ColCount (cs8900_read (dev,PP_TxCOL)); if (!(RegContent (status) & TxOK)) { priv->stats.tx_errors++; if ((RegContent (status) & Out_of_window)) priv->stats.tx_window_errors++; if ((RegContent (status) & Jabber)) priv->stats.tx_aborted_errors++; break; } else if (priv->txlen) { priv->stats.tx_packets++; priv->stats.tx_bytes += priv->txlen; } priv->txlen = 0; netif_wake_queue (dev); break; case BufEvent: if ((RegContent (status) & RxMiss)) { u16 missed = MissCount (cs8900_read (dev,PP_RxMISS)); priv->stats.rx_errors += missed; priv->stats.rx_missed_errors += missed; } if ((RegContent (status) & TxUnderrun)) { priv->stats.tx_errors++; priv->stats.tx_fifo_errors++; priv->txlen = 0; netif_wake_queue (dev); } /* FIXME: if Rdy4Tx, transmit last sent packet (if any) */ break; case TxCOL: priv->stats.collisions += ColCount (cs8900_read (dev,PP_TxCOL)); break; case RxMISS: status = MissCount (cs8900_read (dev,PP_RxMISS)); priv->stats.rx_errors += status; priv->stats.rx_missed_errors += status; break; } } } static void cs8900_transmit_timeout (struct net_device *dev) { cs8900_t *priv = (cs8900_t *) dev->priv; priv->stats.tx_errors++; priv->stats.tx_heartbeat_errors++; priv->txlen = 0; netif_wake_queue (dev); } static int cs8900_start (struct net_device *dev) { int result; /* install interrupt handler */ if ((result = request_irq (dev->irq,&cs8900_interrupt,0,dev->name,dev)) < 0) { printk (KERN_ERR "%s: could not register interrupt %d\n",dev->name,dev->irq); return (result); } // added BSt printk("Setting irq type of cs8900 to RISING\n"); set_irq_type(dev->irq, IRQT_RISING); /* enable the ethernet controller */ cs8900_set (dev,PP_RxCFG,RxOKiE | BufferCRC | CRCerroriE | RuntiE | ExtradataiE); cs8900_set (dev,PP_RxCTL,RxOKA | IndividualA | BroadcastA); cs8900_set (dev,PP_TxCFG,TxOKiE | Out_of_windowiE | JabberiE); cs8900_set (dev,PP_BufCFG,Rdy4TxiE | RxMissiE | TxUnderruniE | TxColOvfiE | MissOvfloiE); cs8900_set (dev,PP_LineCTL,SerRxON | SerTxON); cs8900_set (dev,PP_BusCTL,EnableRQ); #ifdef FULL_DUPLEX cs8900_set (dev,PP_TestCTL,FDX); #endif /* #ifdef FULL_DUPLEX */ /* start the queue */ netif_start_queue (dev); MOD_INC_USE_COUNT; return (0); } static int cs8900_stop (struct net_device *dev) { /* disable ethernet controller */ cs8900_write (dev,PP_BusCTL,0); cs8900_write (dev,PP_TestCTL,0); cs8900_write (dev,PP_SelfCTL,0); cs8900_write (dev,PP_LineCTL,0); cs8900_write (dev,PP_BufCFG,0); cs8900_write (dev,PP_TxCFG,0); cs8900_write (dev,PP_RxCTL,0); cs8900_write (dev,PP_RxCFG,0); /* uninstall interrupt handler */ free_irq (dev->irq,dev); /* stop the queue */ netif_stop_queue (dev); MOD_DEC_USE_COUNT; return (0); } static struct net_device_stats *cs8900_get_stats (struct net_device *dev) { cs8900_t *priv = (cs8900_t *) dev->priv; return (&priv->stats); } static void cs8900_set_receive_mode (struct net_device *dev) { if ((dev->flags & IFF_PROMISC)) cs8900_set (dev,PP_RxCTL,PromiscuousA); else cs8900_clear (dev,PP_RxCTL,PromiscuousA); if ((dev->flags & IFF_ALLMULTI) && dev->mc_list) cs8900_set (dev,PP_RxCTL,MulticastA); else cs8900_clear (dev,PP_RxCTL,MulticastA); } static int cs8900_eeprom (struct net_device *dev) { cs8900_t *priv = (cs8900_t *) dev->priv; int i; #ifdef DEBUG eepromdump (dev); #endif if( (cs8900_read( dev, PP_SelfST) & EEPROMpresent) == 0) { /* no eeprom */ return (-ENODEV); } /* add character device for easy eeprom programming */ if( (priv->char_devnum=register_chrdev(0,"cs8900_eeprom",&cs8900_eeprom_fops)) != 0) printk (KERN_INFO "%s: Registered cs8900_eeprom char device (major #%d)\n", dev->name, priv->char_devnum); else printk (KERN_WARNING "%s: Failed to register char device cs8900_eeprom\n",dev->name); if( (cs8900_read( dev, PP_SelfST) & EEPROMOK) == 0) { /* bad checksum, invalid config block */ return (-EFAULT); } /* If we get here, the chip will have initialized the registers * that were specified in the eeprom configuration block * We assume this is at least the mac address. */ for (i = 0; i < ETH_ALEN; i += 2) { u16 mac = cs8900_read (dev,PP_IA + i); dev->dev_addr[i] = mac & 0xff; dev->dev_addr[i+1] = (mac>>8) & 0xff; } return (0); } /* * EEPROM Charater device */ static int cs8900_eeprom_fopen(struct inode *inode, struct file *file) { u16 i; for( i=0; i<MAX_EEPROM_SIZE/2; i++) { cs8900_eeprom_read( &cs8900_dev, &cs8900_eeprom_cache[i],i); } return 0; } static int cs8900_eeprom_frelease(struct inode *inode, struct file *file) { return 0; } static loff_t cs8900_eeprom_fllseek(struct file * file,loff_t offset, int whence) { long newpos; switch(whence) { case 0: /* SEEK_SET */ newpos = offset; break; case 1: /* SEEK_CUR */ newpos = file->f_pos + offset; break; case 2: /* SEEK_END */ newpos = (MAX_EEPROM_SIZE-1) - offset; break; default: /* can't happen */ return -EINVAL; } if( (newpos<0) || (newpos>=MAX_EEPROM_SIZE)) return -EINVAL; file->f_pos = newpos; return newpos; } static ssize_t cs8900_eeprom_fread(struct file *file, char *buf, size_t count, loff_t *f_pos) { unsigned char *temp = (unsigned char *)cs8900_eeprom_cache; if (*f_pos >= MAX_EEPROM_SIZE) return 0; if (*f_pos + count > MAX_EEPROM_SIZE) count = MAX_EEPROM_SIZE - *f_pos; if (count<1) return 0; if (copy_to_user(buf, &temp[*f_pos], count)){ return -EFAULT; } *f_pos += count; return count; } static ssize_t cs8900_eeprom_fwrite(struct file *file, const char *buf, size_t count, loff_t *f_pos) { u16 i; unsigned char *temp = (unsigned char *)cs8900_eeprom_cache; if (*f_pos >= MAX_EEPROM_SIZE) return 0; if (*f_pos + count > MAX_EEPROM_SIZE) count = MAX_EEPROM_SIZE - *f_pos; if (count<1) return 0; /* FIXME: lock critical section */ /* update the cache */ if (copy_from_user(&temp[*f_pos], buf, count)){ return -EFAULT; } /* not concerned about performance, so write the entire thing */ for( i=0; i<MAX_EEPROM_SIZE/2; i++) { cs8900_eeprom_write( &cs8900_dev, &cs8900_eeprom_cache[i],i); } *f_pos += count; return count; } /* * Architecture dependant code */ #ifdef CONFIG_SA1100_FRODO static void frodo_reset (struct net_device *dev) { int i; volatile u16 value; /* reset ethernet controller */ FRODO_CPLD_ETHERNET |= FRODO_ETH_RESET; mdelay (50); FRODO_CPLD_ETHERNET &= ~FRODO_ETH_RESET; mdelay (50); /* we tied SBHE to CHIPSEL, so each memory access ensure the chip is in 16-bit mode */ for (i = 0; i < 3; i++) value = cs8900_read (dev,0); /* FIXME: poll status bit */ } #endif /* #ifdef CONFIG_SA1100_FRODO */ #ifdef CONFIG_SA1100_CERF // Rather Nasty Hack - since the CS8900 EEPROM isn't written properly, we have // to read it manually static int __init cs8900_wait_eeprom_ready (struct net_device *dev) { int timeout = jiffies; /* Check to see if the EEPROM is ready, a timeout is used- * just in case EEPROM is ready when SI_BUSY in the PP_SelfST * is clear */ while ( cs8900_read(dev, PP_SelfST) & SIBUSY) if (jiffies - timeout >= 40) return -1; return 0; } static int __init cs8900_read_eeprom (struct net_device *dev, u16 off, u16 *value) { if (cs8900_wait_eeprom_ready(dev) < 0) return 0; /* Send EEPROM read command and location to read */ cs8900_write (dev, PP_EEPROMCommand, off | EEReadRegister); if (cs8900_wait_eeprom_ready(dev) < 0) return 0; /* Get EEPROM data from EEPROM data register */ *value = cs8900_read (dev, PP_EEPROMData); return 1; } #endif /* #ifdef CONFIG_SA1100_CERF */ /* * Driver initialization routines */ int __init cs8900_probe (struct net_device *dev) { static cs8900_t priv; int i,result; u16 value; #if defined(CONFIG_SA1100_CERF) u16 MAC_addr[3] = {0, 0, 0}; #endif /* #if defined(CONFIG_SA1100_CERF */ printk ("Cirrus Logic CS8900A driver for Linux (V0.01)\n"); memset (&priv,0,sizeof (cs8900_t)); ether_setup (dev); dev->open = cs8900_start; dev->stop = cs8900_stop; dev->hard_start_xmit = cs8900_send_start; dev->get_stats = cs8900_get_stats; dev->set_multicast_list = cs8900_set_receive_mode; dev->tx_timeout = cs8900_transmit_timeout; dev->watchdog_timeo = HZ; dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x12; dev->dev_addr[2] = 0x34; dev->dev_addr[3] = 0x56; dev->dev_addr[4] = 0x78; dev->dev_addr[5] = 0x9a; dev->if_port = IF_PORT_10BASET; dev->priv = (void *) &priv; spin_lock_init(&priv.lock); SET_MODULE_OWNER (dev); if ((result = check_region (dev->base_addr,16))) { printk (KERN_ERR "%s: can't get I/O port address 0x%lx\n",dev->name,dev->base_addr); return (result); } request_region (dev->base_addr,16,dev->name); #ifdef CONFIG_SA1100_FRODO dev->base_addr = FRODO_ETH_IO + 0x300; dev->irq = FRODO_ETH_IRQ; frodo_reset (dev); #endif /* #ifdef CONFIG_SA1100_FRODO */ #if defined(CONFIG_SA1100_CERF) || defined(CONFIG_PXA_CERF_PDA) dev->base_addr = CERF_ETH_IO + 0x300; dev->irq = CERF_ETH_IRQ; #endif /* #if defined(CONFIG_SA1100_CERF) || defined(CONFIG_PXA_CERF_PDA) */ #if defined(CONFIG_SA1100_CERF) if (!cs8900_read_eeprom(dev, 0x1c, &MAC_addr[0])) printk("\ncs8900: [CERF] EEPROM[0] read failed\n"); if (!cs8900_read_eeprom(dev, 0x1d, &MAC_addr[1])) printk("\ncs8900: [CERF] EEPROM[1] read failed\n"); if (!cs8900_read_eeprom(dev, 0x1e, &MAC_addr[2])) printk("\ncs8900: [CERF] EEPROM[2] read failed\n"); for (i = 0; i < ETH_ALEN / 2; i++) { dev->dev_addr[i*2] = MAC_addr[i] & 0xff; dev->dev_addr[i*2+1] = (MAC_addr[i] >> 8) & 0xff; } #endif /* #if defined(CONFIG_SA1100_CERF) */ /* verify EISA registration number for Cirrus Logic */ if ((value = cs8900_read (dev,PP_ProductID)) != EISA_REG_CODE) { printk (KERN_ERR "%s: incorrect signature 0x%.4x\n",dev->name,value); return (-ENXIO); } /* verify chip version */ value = cs8900_read (dev,PP_ProductID + 2); if (VERSION (value) != CS8900A) { printk (KERN_ERR "%s: unknown chip version 0x%.8x\n",dev->name,VERSION (value)); return (-ENXIO); } /* setup interrupt number */ cs8900_write (dev,PP_IntNum,0); /* If an EEPROM is present, use it's MAC address. A valid EEPROM will * initialize the registers automatically. */ #if defined(CONFIG_SA1100_CERF) result = -ENODEV; /* Nasty and ugly... */ #else result = cs8900_eeprom (dev); #endif /* defined(CONFIG_SA1100_CERF) */ printk (KERN_INFO "%s: CS8900A rev %c at %#lx irq=%d", dev->name,'B' + REVISION (value) - REV_B, dev->base_addr, dev->irq); if (result == -ENODEV) { /* no eeprom or invalid config block, configure MAC address by hand */ for (i = 0; i < ETH_ALEN; i += 2) cs8900_write (dev,PP_IA + i,dev->dev_addr[i] | (dev->dev_addr[i + 1] << 8)); printk (", no eeprom "); } else if( result == -EFAULT) { printk (", eeprom (invalid config block)"); } else { printk (", eeprom ok"); } printk (", addr:"); for (i = 0; i < ETH_ALEN; i += 2) { u16 mac = cs8900_read (dev,PP_IA + i); printk ("%c%02X:%2X", (i==0)?' ':':', mac & 0xff, (mac >> 8)); } printk ("\n"); return (0); } static int __init cs8900_init (void) { strcpy(cs8900_dev.name, "eth%d"); return (register_netdev (&cs8900_dev)); } static void __exit cs8900_cleanup (void) { cs8900_t *priv = (cs8900_t *) cs8900_dev.priv; if( priv->char_devnum) { unregister_chrdev(priv->char_devnum,"cs8900_eeprom"); } release_region (cs8900_dev.base_addr,16); unregister_netdev (&cs8900_dev); } MODULE_AUTHOR ("Abraham van der Merwe <abraham@2d3d.co.za>"); MODULE_DESCRIPTION ("Cirrus Logic CS8900A driver for Linux (V0.01)"); MODULE_LICENSE ("GPL"); EXPORT_NO_SYMBOLS; module_init (cs8900_init); module_exit (cs8900_cleanup);
Forums:
이것은 무엇을 의미하는 주제죠??
이것은 무엇을 의미하는 주제죠??
---
http://coolengineer.com
assabet류의 strong arm platform에 올린 cs8900
assabet류의 strong arm platform에 올린 cs8900 series ethernet controller driver인것같군요.
음. 소스공유코너로 옮겨야 할지도..^^;
--------------------------------------------------------------------------------
\(´∇`)ノ \(´∇`)ノ \(´∇`)ノ \(´∇`)ノ
def ed():neTdiVeR in range(thEeArTh)
단지 코드만 인용하는 형태로 쓰셔서 원저자의 설명을 요합니다. :?
단지 코드만 인용하는 형태로 쓰셔서 원저자의 설명을 요합니다. :?
---
http://coolengineer.com
s 가 빠졌네요..asdf
s 가 빠졌네요..
asdf
언제나 시작
댓글 달기