c언어 푸는 것 문의합니다.
글쓴이: dudehdznddl / 작성시간: 일, 2015/03/29 - 4:40오후
#include "stdafx.h"
#define PI 3.141592
void main(void)
{
long int factorial=1;
float y=0.0,y1=1.0,x;
int n,i, sign=1;
printf("x.\n");
scanf("%f",&x);
x *= PI/180.0;
printf("n.\n");
scanf("%d",&n);
for(i=1;i<=n;i++) {
factorial *= i;
y1 *= x;
if(i%2==0) continue;
y += sign*y1/factorial;
sign = -sign;
}
printf("y = %f \n",y);
}
sin x 푸는 것을 cos x로 바꿔서 풀어야 하는데 위의 형식 유지하면서 무엇을 바꾸면 될까요???
Forums:


찾아보니. 이런것이 있네요.
정확한건 구현하시는분이 아실거 같습니다. ㅇ_ㅇ;; sin x 를 설명하실 수 있다면. cos x 도 설명이 될겁니다.
cos() sin() 정리
http://cfile226.uf.daum.net/media/260BEC3F5517CDA3108D50
값도 확인해보시고. 줄도 맞춰 보십시요. ㅇ_ㅇ;;
http://codepad.org/
#include <stdio.h> #define PI 3.141592 void main(void) { long int factorial=1; float y=0.0,y1=1.0,x; int n,i, sign=1; x = 1; n = 100; x *= PI/180.0; for(i=1;i<=n;i++) { factorial *= i; y1 *= x; if(i%2==0) continue; y += sign*y1/factorial; sign = -sign; printf("factorial = %15ld \t", factorial); printf("y1 = %15f \t", y1); printf("x = %f \t", x); printf("sign = %3d \t", sign); printf("y = %f \n", y); } } factorial = 1 y1 = 0.017453 x = 0.017453 sign = -1 y = 0.017453 factorial = 6 y1 = 0.000005 x = 0.017453 sign = 1 y = 0.017452 factorial = 120 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 5040 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = 362880 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 39916800 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = 1932053504 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 2004310016 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = -288522240 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 109641728 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = -1195114496 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 862453760 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = 2076180480 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 1484783616 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = -1241513984 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 738197504 y1 = 0.000000 x = 0.017453 sign = 1 y = 0.017452 factorial = -2147483648 y1 = 0.000000 x = 0.017453 sign = -1 y = 0.017452 factorial = 0 y1 = 0.000000 x = 0.017453 sign = 1 y = nan factorial = 0 y1 = 0.000000 x = 0.017453 sign = -1 y = nan factorial = 0 y1 = 0.000000 x = 0.017453 sign = 1 y = nan이거 cos 무한급수 구현한 소스 같은데. 한번 확인 해보세요.
비쥬얼 C 질문입니다.
http://tip.daum.net/question/3300200
개발자 분에 동의가 필요하지만. 확인용으로 먼저 올려봅니다.
C++ 컴파일러로 확인 가능합니다.
http://codepad.org/
#include <math.h> #ifndef PI #define PI 3.1415927 #endif /*Cosine 함수 시작*/ double cosine(int degree) { double x=0, term, r; /* x는 0로 지정해두고 r은 입력받은 정수를 라디안으로 바꾼값을 저장할 변수*/ int i; /*for문을 사용하기위한 변수*/ degree = degree%360; degree = (degree<180)?(degree):(degree - 360); // r의 절대값을 1/2 이하로 해 주면 더 빠르게 수렴. r=degree*2*PI/360; /*입력받은 정수를 라디안으로 변환*/ /* r*r (r*r)*r*r (r*r*r*r)*r*r * cos r = 1 - --- + --------- - ------------- ... * 1*2 (1*2)*3*4 (1*2*3*4)*5*6 */ term = 1; for(i=0; i<=7; i++) /* i를 1부터 5까지 1씩 증가시켜 for문 사용 */ { x += term; term *= (-1.0)*(r*r)/((2*i+1)*(2*i+2)); } return x; } int main() { int degree; for(degree = 0; degree< 540; degree+=7) { printf("ncos(%3d) = %f, %f, %f\n" , degree , cosine(degree) , cos(((degree%360)*2*PI/360)) , cosine(degree)- cos(((degree%360)*2*PI/360))); } return 0; } ncos( 0) = 1.000000, 1.000000, 0.000000 ncos( 7) = 0.992546, 0.992546, 0.000000 ncos( 14) = 0.970296, 0.970296, 0.000000 ncos( 21) = 0.933580, 0.933580, 0.000000 ncos( 28) = 0.882948, 0.882948, 0.000000 ncos( 35) = 0.819152, 0.819152, 0.000000 ncos( 42) = 0.743145, 0.743145, -0.000000 ncos( 49) = 0.656059, 0.656059, -0.000000 ncos( 56) = 0.559193, 0.559193, -0.000000 ncos( 63) = 0.453990, 0.453990, -0.000000 ncos( 70) = 0.342020, 0.342020, -0.000000 ncos( 77) = 0.224951, 0.224951, -0.000000 ncos( 84) = 0.104528, 0.104528, -0.000000 ncos( 91) = -0.017452, -0.017452, -0.000000 ncos( 98) = -0.139173, -0.139173, -0.000000 ncos(105) = -0.258819, -0.258819, -0.000000 ncos(112) = -0.374607, -0.374607, -0.000000 ncos(119) = -0.484810, -0.484810, -0.000000 ncos(126) = -0.587785, -0.587785, -0.000000 ncos(133) = -0.681998, -0.681998, -0.000000 ncos(140) = -0.766045, -0.766044, -0.000000 ncos(147) = -0.838671, -0.838671, -0.000000 ncos(154) = -0.898794, -0.898794, -0.000000 ncos(161) = -0.945519, -0.945519, -0.000001 ncos(168) = -0.978149, -0.978148, -0.000001 ncos(175) = -0.996197, -0.996195, -0.000003 ncos(182) = -0.999394, -0.999391, -0.000003 ncos(189) = -0.987690, -0.987688, -0.000002 ncos(196) = -0.961263, -0.961262, -0.000001 ncos(203) = -0.920505, -0.920505, -0.000001 ncos(210) = -0.866026, -0.866025, -0.000000 ncos(217) = -0.798636, -0.798635, -0.000000 ncos(224) = -0.719340, -0.719340, -0.000000 ncos(231) = -0.629320, -0.629320, -0.000000 ncos(238) = -0.529919, -0.529919, -0.000000 ncos(245) = -0.422618, -0.422618, -0.000000 ncos(252) = -0.309017, -0.309017, -0.000000 ncos(259) = -0.190809, -0.190809, -0.000000 ncos(266) = -0.069756, -0.069756, -0.000000 ncos(273) = 0.052336, 0.052336, -0.000000 ncos(280) = 0.173648, 0.173648, -0.000000 ncos(287) = 0.292372, 0.292372, -0.000000 ncos(294) = 0.406737, 0.406737, -0.000000 ncos(301) = 0.515038, 0.515038, -0.000000 ncos(308) = 0.615661, 0.615662, -0.000000 ncos(315) = 0.707107, 0.707107, -0.000000 ncos(322) = 0.788011, 0.788011, -0.000000 ncos(329) = 0.857167, 0.857167, -0.000000 ncos(336) = 0.913545, 0.913545, -0.000000 ncos(343) = 0.956305, 0.956305, -0.000000 ncos(350) = 0.984808, 0.984808, -0.000000 ncos(357) = 0.998630, 0.998630, -0.000000 ncos(364) = 0.997564, 0.997564, 0.000000 ncos(371) = 0.981627, 0.981627, 0.000000 ncos(378) = 0.951057, 0.951057, 0.000000 ncos(385) = 0.906308, 0.906308, 0.000000 ncos(392) = 0.848048, 0.848048, 0.000000 ncos(399) = 0.777146, 0.777146, -0.000000 ncos(406) = 0.694658, 0.694658, -0.000000 ncos(413) = 0.601815, 0.601815, -0.000000 ncos(420) = 0.500000, 0.500000, -0.000000 ncos(427) = 0.390731, 0.390731, -0.000000 ncos(434) = 0.275637, 0.275637, -0.000000 ncos(441) = 0.156434, 0.156434, -0.000000 ncos(448) = 0.034899, 0.034899, -0.000000 ncos(455) = -0.087156, -0.087156, -0.000000 ncos(462) = -0.207912, -0.207912, -0.000000 ncos(469) = -0.325568, -0.325568, -0.000000 ncos(476) = -0.438371, -0.438371, -0.000000 ncos(483) = -0.544639, -0.544639, -0.000000 ncos(490) = -0.642788, -0.642788, -0.000000 ncos(497) = -0.731354, -0.731354, -0.000000 ncos(504) = -0.809017, -0.809017, -0.000000 ncos(511) = -0.874620, -0.874620, -0.000000 ncos(518) = -0.927184, -0.927184, -0.000001 ncos(525) = -0.965927, -0.965926, -0.000001 ncos(532) = -0.990270, -0.990268, -0.000002 ncos(539) = -0.999852, -0.999848, -0.000004sin(PI/4)를 테일러 무한급수를 이용해서 푸는 문제 C++[출처] sin(PI/4)를 테일러 무한급수를 이용해서 푸는 문제|작성자 xtElite
http://blog.naver.com/xtelite/50022553426
Cosine
http://mathworld.wolfram.com/Cosine.html
http://www.wolframalpha.com/input/?i=N[Sqrt[Sum[6*%281%2Fn^2%29%2C+{n%2C+1%2C+Infinity}]]%2C+31]
무한등비 급수
http://www.mathteacher.pe.kr/mt_11/mt_16_06.htm
조화 급수(harmonic series)와 오일러-마스케로니 상수(Euler-Mascheroni constant)
http://ghebook.blogspot.kr/2010/11/harmonic-series-euler-mascheroni.html
Random Attractors
Found using Lyapunov Exponents
http://paulbourke.net/fractals/lyapunov/
Taylor Series
http://www.mathsisfun.com/algebra/taylor-series.html
Trigonometric functions
http://en.wikipedia.org/wiki/Trigonometric_functions
Sine
http://en.wikipedia.org/wiki/Sine
----------------------------------------------------------------------------
젊음'은 모든것을 가능하게 만든다.
매일 1억명이 사용하는 프로그램을 함께 만들어보고 싶습니다.
정규 근로 시간을 지키는. 야근 없는 회사와 거래합니다.
각 분야별. 좋은 책'이나 사이트' 블로그' 링크 소개 받습니다. shintx@naver.com
댓글 달기