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Abstract

We discuss an approach that explores the use of scaffolding
of source code to facilitate its renovation. We show that
scaffolding is a useful paradigm for software renovation. We
designed syntax and semantics for scaffolding, that enables
all relevant applications of scaffolding. The automatic gen-
eration of extensions to a normal grammar, so that the re-
sulting extension grammar can parse code with scaffolding,
is discussed. We used the scaffolding paradigm itself to im-
plement the generation process, thereby showing that our
approach towards scaffolding is also useful in software de-
velopment. Finally, we discuss real-world applications of
scaffolding for software renovation, in both our own work
and work from people in the reengineering IT industry.

Categories and Subject Description: D.2.6 [Software En-
gineering]: Programming Environments—Interactive; D.2.7
[Software Engineering]: Distribution and Maintenance—
Restructuring; D.3.4. [Processors]: Parsing.

Additional Key Words and Phrases:

renovation, Software renovation factories, Language description

Reengineering, System

development, Grammar reengineering, Scaffolding, Computer
aided language engineering (CALE).

1 Introduction

A very common concept in the development of systems is
the use of code, data, or entire programs that are built for
debugging or tracing purposes, but never intended to be in
the final product. This technology is also known as scaffold-
ing. Knuth [24, p. 189] mentions that the “most effective
debugging techniques seem to be those which are designed
and built into the program itself—many of today’s best pro-
grammers will devote nearly half of there programs to fa-
cilitating the debugging process on the other half; the first
half, which usually consists of fairly straightforward rou-
tines, will eventually be thrown away, but the net result
is a surprising gain in productivity.” While Knuth focuses
on programming in the small, these figures are also men-
tioned by people discussing programming in the large. For
instance, Brooks [12, p. 148] wrote in 1975 that it is “not un-
reasonable for there to be half as much code in scaffolding as
there is in the [final] product.” It will be not a surprise that
in books on good coding practices, scaffolding is included.
See for instance, [3] and [28]. Also in the cost estimation
area the phenomenon of code that is not in the final product
has been noted [20, p. 18].

The scaffolding around a building provides access to com-
ponents that workers couldn’t otherwise reach. Similarly,
software scaffolding gives programmers access to parts that
they can otherwise not reach [3]. Often such scaffolding code
shows intermediate results in complex calculations and/or
manipulations of data. So, scaffolding code is included to
understand software. Since scaffolding is usually removed
when a software product is put into production, it seems
natural to us to bring back such knowledge in the source
code while renovating it. Such knowledge can be control-
flow or data-flow information, or more specific information.
We observed that for automated renovation of software, the
source code manipulations are so complex, that intermedi-
ate results of calculations are mandatory in order to keep
track of the modification process. We have found it ex-
tremely useful to include such scaffolding in the source text
so that easy and immediate inspection and/or modification
of the results is viable. This inspection is not only meant
for humans but also for automated transformations to the
software. For example, in a first pass, a program is analyzed
and the results of the analysis are put in a scaffolding so that
we can see that the analysis provides the right information.
Then in a second pass, the program can be transformed us-
ing the results of the analysis. Recall that scaffolding for
development can be parsed by the compiler, for it is built
in the programs. In our case scaffolding can also be parsed.
However, our scaffolding normally is not part of the lan-
guage that is used in the source programs. This means that
we have to incorporate the scaffolding inside the existing
language so that we can parse both the original code plus
the scaffolding.

We have developed a systematic approach to the use of
scaffolding in software renovation. We developed tools that
turn a given context-free grammar into a grammar that in-
corporates scaffolding. Those tools are part of our Factory
Generator. This is a piece of software that generates from a
context-free grammar, an architecture that we call a generic
software renovation factory for that language. A generic
software renovation factory enables rapid development of
analysis and transformation components that can use scaf-
folding: to add scaffolding to the source code, to analyze
this scaffolding, and to use the analysis results for making
the necessary transformations.

Organization The remainder of this paper is organized
as follows. In Section 2 we first give an idea of the use of
scaffolding in renovation. In Section 3 we discuss the idea of
scaffolding in a grammar context. We give a rough overview



of the form that these extended grammars take. Moreover
with the aid of simple context-free rules we make the pro-
cess of obtaining extended grammars transparent. Then we
are ready for a full treat of the syntax and semantics of
scaffolding in Section 4. In Section 5 we elaborate on the
generation process leading to grammars extended with scaf-
folding. Section 6 discusses applications of scaffolding both
in our own work, and work done in IT industry. In Section 7
we conclude by summarizing the main points of the paper.

Related work There is a rich body of work in the realm
of scaffolding abstract syntax trees (ASTs). We mention
attribute grammars [1, 40] where in addition to grammar
rules, also rules for attributing the nodes of the ASTs can
be defined. In fact, this could be called scaffolding as well
albeit that the underlying AST is decorated and initially
the source code itself is not scaffolded. In many and di-
verse reverse engineering contributions we encountered sim-
ilar scaffolding of the underlying ASTs of source programs
with standard information like control-flow and data-flow
information, but not of the source programs themselves.
See for instance the literature on program plan recogni-
tion [42, 43, 44]. We do not scaffold the AST, but we
scaffold the source text, then we parse the resulting scaf-
folded code. After a (small) transformation step the code
and the scaffolding can be unparsed, inspected and/or mod-
ified if necessary. Moreover, lexical tools and humans can
easily add scaffolding to source code, which is hard on an
intermediate AST format. So in our case there is just more
code in the form of scaffolding. As far as we know, the use of
source-based scaffolding that is not source code or comment
is new. Of course the concept of using real source code as
scaffolding during development is as old as programming,
as we already mentioned.

We realize that complex transformations that we carry
out using scaffolding can also be implemented using many
other transformation systems. In fact, everything we do
can also be implemented in raw machine language. In our
opinion, the relevant issue is not whether it is possible to
implement renovation problems using technologies like RE-
FINE [34], COSMOS [15], the ASF+SDF Meta-Environ-
ment [23], RainCode [33], Elegant [2, 32], TXL [14], or still
other systems. The relevant issue is whether it can be done
in a convenient way. Our approach emphasizes how trans-
formations can be implemented as easy as possible. Let us
illustrate our point with an example. In the paper [26] a
complex migration from a proprietary language to procedu-
ral C++ is carried out. One of the issues that is mentioned
in this paper is that “it has become apparent from this
project, that the transformation logic should be as modular
and localized as possible (i.e. different transformation pro-
grams for each language construct)”. We contacted Kostas
Kontogiannis [25] about this project, and he told us that
he will never ever implement such tools again. The rea-
son was that implementing such transformations was a too
complex task, and it was very difficult to keep track of the
activities. We believe that scaffolding contributes to making
transformations more easy, just like scaffolding also makes
development more easy.
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We thank Joost Visser (University of Amsterdam) for his
comments on attribute grammars.

2 Scaffolding in Action

In this section we give some examples illustrating the use of
scaffolding. We do this in order to give the reader an idea be-
fore the more formal discussions commence. We recall that
in Section 6 more examples are discussed. We will briefly
touch upon the issues of context-sensitive transformations,
infinitesimal small transformations, phasing of transforma-
tions, performance improvement by the use of scaffolding,
reuse, the use of lexical tools in combination with scaffold-
ing, and the use of our version of scaffolding in software
development.

We start with a COBOL example containing a typical
scaffolding. The syntax for scaffolding is to use the keyword
SCAFFOLD with text brackets, and then use a self-defined
type (e.g. WINDOW), and again text brackets containing DATA
(in this case a variable YY of type Data-name).

COMPUTE XX = ZZ - 80.
SCAFFOLD [ WINDOW [ YY :
COMPUTE AGE = YY - 80.

Data-name ] ]

Context sensitive transformations The above exam-
ple shows the possible output of a Y2K analysis engine or a
hand-written output by an analyst. As can be seen, similar
patterns are used in a single program for two tasks. One
is a normal calculation, but the other is a date related cal-
culation that will fail after the Year 2000. So in a similar
context, the first code does not need to be changed but the
second statement needs repair. The recommendation is to
use a windowing strategy. A transformation engine that
can also parse the scaffolding can now use the information
to automatically change it in the right way for each occur-
rence. The transformed code might look as follows (after
the scaffolding has been removed).

COMPUTE XX = ZZ - 80.
IF YY > 50
COMPUTE AGE
ELSE
COMPUTE AGE =

YY - 80

YY + 100 - 80.

We stress that this kind of scaffolding has an important
use. Best-in-class Y2K analysis engines, like COSMOS [15,
17, 21], keep track of line and column information. This
lexically oriented information can be used to make simple
safe changes to the analyzed software like the addition of
scaffolding. Then using a context-free change engine, the
actual changes can be safely made.

Infinitesimal small transformations Another impor-
tant purpose of scaffolding is what we call the infinitesimal
small transformation. In complex code transformations it
is often convenient to be able to access intermediate re-

sults. Like in development, where code is scaffolded to keep



track of such intermediate results, we use scaffolding to keep
track of intermediate transformation steps. Also we can con-
struct the required analysis results step by step before we
commence with an actual transformation. We noticed that
implementations that make extensive use of transformation
technology can become quite complex. Using scaffolding, it
is always possible to decompose difficult calculations into
smaller steps. Scaffolding enables us to make the steps
so small that they seem infinitesimally small. We give a
typical example. Suppose that we wish to restructure As-
sembler/370 programs to improve their maintainability or
to migrate it to, say, OS/VS COBOL. In Assembler/370,
it is possible to use jumps using a hard coded number of
bytes instead of using a label. We provide some abstract
code plus the transformed code below. Below, GO stands for
the jump instruction, S1-S4 are arbitrary Assembler/370
instructions, and LAB is an Assembler/370 label. Further-
more, we assume that the number of bytes necessary to store
instructions S1 and S2 equals 24. So the transformation be-
low is obvious.

GO *+24 GO LAB
S1 S1
S2 -—=> S2
S3 LAB S3
S4 S4

In order to perform such a transformation, four questions
need to be answered.

1. What is the size of the instructions S1, ..., 547

2. What is the cumulative byte distance between state-
ments?

3. When is this size equal to 247

4. Where to put the label LAB?

Scaffolding can be used to keep the mental steps in this
process as small as necessary. Let us show how we can solve
this problem with the aid of scaffolding. First we scaffold
the code by providing the byte size of all the instructions.
This answers the first question, and puts the result in the
code, ready for human inspection.

GO *+24
S1 SCAFFOLD [ SIZE [ 8] ]
S2 SCAFFOLD [ SIZE [ 16 ] 1
S3 SCAFFOLD [ SIZE [ 8 ] ]
S4 SCAFFOLD [ SIZE [ 4 1] 1]

The problem of providing the cumulative distance be-
tween statements is now reduced to simple addition of num-
bers. So we use the scaffolding code itself, and we produce
the results of this calculation a new type of scaffolding (for
the sake of clarity we omit the SIZE scaffolding):

GO *+24

S1 SCAFFOLD [ CUM_DIST [ 0 ] 1]
S2 SCAFFOLD [ CUM_DIST [ 8 ] ]
S3 SCAFFOLD [ CUM_DIST [ 24 ] ]
S4 SCAFFOLD [ CUM_DIST [ 32 ] ]

At which statement the byte size equals 24 is now vis-
ible in the code for inspection. Moreover, the scaffolding
can simply be matched by a transformation, so we can now
easily add the label and replace the byte addressing:

GO LAB

S1 SCAFFOLD

S2 SCAFFOLD
LAB S3 SCAFFOLD

S4 SCAFFOLD

[ CUM_DIST [
[ CUM_DIST [
[ CUM_DIST [
[ CUM_DIST [

Finally we can remove the scaffolding:

GO LAB
S1
S2
LAB S3
sS4

This example illustrates that problems can be decom-
posed into very small and understandable steps. Moreover,
intermediate results of the calculations can be inspected by
humans and used by transformations to make the necessary
changes.

Phasing of transformations
not only represent intermediate results, but can also provide

The use of scaffolding can

the possibility of delaying the execution of certain transfor-
mations. We usually discriminate three phases in a transfor-
mation process. First during certain calculations scaffolding
is added to mark that something needs to be done. When
all the calculations of a certain type are finished, the sec-
ond phase starts: we collect the scaffolded information and
analyze the scaffolding so that a transformation can be pre-
pared. Then in the last phase, we carry out the actual trans-
formations. typical examples of such three phase processes
are transformations that require fresh variables. In many
transformations we need auxiliary variables. This happens,
e.g., when eliminating GO TO statements in source code. We
can avoid code duplication by introducing so-called (fresh)
switch variables. See for instance [8] for a string of such
examples. We can first add the variables while eliminating
the jump instructions. We then create scaffolding stating
that a new variable is made, together with its name. When
all G0 TO statements have been eliminated, we collect the
scaffolding and put it at the top of the program. Subse-
quently, we add all variables in the DATA DIVISION in one
fell swoop. Finally, we can check the freshness of the vari-
ables in a single phase.

Performance In many cases information that has been
calculated once, can be used many times. Such information
can be stored in a scaffolding so that we can reuse the result
of the calculations. For instance, we have implemented a
systolic algorithm for eliminating GO TO statements in [36].
In this algorithm we move parts of the code that are free
of GO TOs to a simulated subroutine area. We can scaffold
those COBOL paragraphs with the number of GO TGs in it.
As soon as this number is zero we can ship that part to the
simulated subroutine area. We will come back on this issue
in Section 6.



Reuse We have seen that we can reuse the results of calcu-
lations, which gives better performance. We can also reuse
the small steps themselves. Since the steps we make in
transforming code are small, the meaning of those steps is
often simple and clear, and more important not polluted
with idiosyncrasies of large transformations. This encour-
ages reuse of existing transformations and analyses. For
instance, the transformations to calculate the number of GO
T0s in COBOL are the same as the ones to calculate the
cumulative byte distance in the Assembler/370 code. They
are both simple additions of natural numbers.

AST-directed lexical operations Since we parse all the
code, and make changes on the AST level, we also have
the power to unparse the code and give it a specific AST-
directed layout, possibly enriched with scaffolding. Next,
a simple lexical tool like perl [41] can be used safely. On
the one hand by the fact that we use an unparser, and on
the other hand, since we can attach scaffolding to the right
places we accomplish that no false positives can be created
by the lexical tools. Here we can see an advantage of using
scaffolding in the program text instead of in the parse tree
representation, as is usually done in the reverse engineering
area. In Section 6.2 we will see many more applications of
the combination of lexical tools and scaffolding.

Scaffolding and development As noted in the intro-
duction, scaffolding is commonly used in development. Also
our form of scaffolding is useful for development. For exam-
ple, we used it in order to build the transformations that
generate the extended grammar that incorporates scaffold-
ing. We will illustrate this in Section 5. So the use of scaf-
folding as we developed it is not limited to renovation, but
can also be used conveniently for development. It is possi-
ble to put architectural information in scaffolding. We can
think of information residing in the source code that will be
inspected by the build process, so that architectural rules
can be checked to hold. This idea was born while working
on the paper [27] where a process is proposed that includes
such scaffolding in the architecture, so that architectural
transformations can be carried out. When such scaffolding
is in the systems from the start, it can be used to check
whether architectural rules are violated.

3 Extended Grammars

In this section we assume that we already have a grammar
available that is not geared towards the use of scaffolding.
These grammars can be made by hand, as discussed in the
case study [7] where an extensive COBOL grammar is made
including CICS and SQL for a large bank (the tenth bank of
the world). Such grammars can also be generated from the
compiler source code as discussed in case study [39] where
we generated a 3000 production rule grammar for Ericsson
Software Technology directly from the source code of their
proprietary compiler.

Before we continue, we mention that all modules are eas-
ily regenerated if the input grammar changes. Note that
grammar changes are common in the reengineering world.

library

| ]
generated

grammar
basics

| ]
generated

extended
grammar

| ]
generated

grammar
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Figure 1: an extended grammar in the context of a software
renovation factory.

For each new project often some changes to the grammar
are necessary. We have elaborated on such issues in another
paper and the interested reader is encouraged to read more
in [9] on this topic. For now it is important to realize that
everything has been generated from the input grammar so
that changes to the input do not imply that the entire ar-
chitecture has to be redone by hand.

In Figure 1 we depicted important parts of an extended
grammar within the context of a generic software renova-
tion factory architecture. First of all we have a library of
modules that are language independent. This does not nec-
essarily need to be a fixed library. To give the reader an
idea, in such a library, we define a number of often used
data types such as Booleans and Integers that are useful in
code analyses and that can fruitfully be used as conditions in
code transformations. When necessary, new data types can
be added effortlessly. Furthermore, the simple scaffolding
language itself is defined in the library. Its syntax and se-
mantics are discussed in detail in Section 4. Since we wish
to analyze and transform scaffolding itself, we generated
for the scaffolding language an analysis and transformation
framework as discussed in [10]. When the scaffolding lan-
guage needs to be adapted to serve some specific need that
we have not anticipated, we can easily regenerate its analy-
sis and transformation framework.

In the second box of Figure 1, we generate from the in-
put grammar a number of basic language specific modules.
We mention a context-free grammar for dealing with lists
and separated lists. Those are very useful when reengineer-
ing code (as has been shown in several other papers, for
instance, [37]). Some other issues are of a more technical
nature, such as a module containing all the sort declarations
and such.



In the third box of Figure 1 we actually extend the input
grammar with scaffolding syntax. Moreover, we isolate the
list and separated list constructs. Since in this paper we fo-
cus on scaffolding we will elaborate a little bit more on that
aspect and postpone discussions like list isolation to another
paper. We proceed to present an input grammar fragment
of COBOL. The grammar rule is in SDF [18] (Syntax Defi-
nition Formalism). The MOVE statement as constructed in [7]
looks as follows.

"MOVE" Corr A-exp "TO" Data-name-p -> Statement

The sort name Corr stands for a possible occurrence of
the keyword CORRESPONDING, the sort name A-exp is an
arithmetical expression, and the sort name Data-name-p
is a list of one or more data names. Of course, the sort
name Statement represents a COBOL statement. It is our
intention to be able to parse not only the COBOL code
(possibly containing CICS/SQL/etc), but also scaffolding
code as we have seen in the previous section. A sample of
code that we might want to analyze or transform (and thus
parse) is:

SCAFFOLD [ WINDOW [ TMP :
MOVE 19 TO TMP.

Data-name ] ]

This code might have been produced by another tool, for
instance a Y2K analysis engine. Or the code has been pro-
duced by hand by a Y2K analyist, working in a Y2K factory,
such as COSMOS 2000 [15]. When we wish to further an-
alyze and/or transform this code, we need to be able to
parse the above code. This means that we have to adapt
the above grammar rule so that the intermediate scaffolding
code is taken into account. We inject in a structured way in
the input grammar an extra or fresh sort that will take care
of this. We will now show the changed grammar so that we
can parse the scaffolding in the above fragment.

X-s "MOVE" Corr A-exp X-s "TO" Data-name-p -> Statement

What happened here is that before each terminal we have
added a fresh sort name X-s. This stands for zero or
more occurrences of sort X. This sort X is defined in the
library. The X stands for extension, or extended. Scaffold-
ing is of sort X so now we can parse the fragment. The
reader might have expected another name for this sort, like
Scaffolding-s or something similar. We put in an extra
layer for the sort introduction for a good reason. Sort in-
troduction does not only serve scaffolding but also other
purposes. We mention that sort introduction also enables
parsing code including its comments. For, if we wish to
transform code containing comments, it is not a good idea
to remove those comments. Consequently, comments are
also of sort X, so that we can deal with comments as well.
We refer the reader to [8] where transformations that include
comments are being discussed in detail. Since scaffolding as
well as comments can occur at virtually any location in code,
their introduction in a grammar is obtained in the same way
as with scaffolding. Therefore, we have chosen to not use
Scaffolding-s as sort name. Other types of extensions to
grammars that one may wish to distinguish from comments
are compiler directives, such as the compiler directives that

are used in CHILL [19] with their typical diamond nota-
tion (<>). Since they can occur also at virtually every loca-
tion in the code, they are comparable to comments, but we
must be able to separate them from comments.

The above introduction with X-s might give rise to the
idea that the introduction transformation is a trivial one.
This is not the case. First of all we cannot just ”prefix” ev-
ery sort name with X-s, for this would give a truly ambigu-
ous grammar. Therefore, we only prefix the terminals. We
make the same modifications to all other context-free rules.
So also for the production rule that defines Corr. With this
procedure we cover almost everything. We miss the sorts
that are lexically defined and context-free used. They are
in fact, terminals in disguise. They do obviously not have
a context-free definition and will be missed unless we take
precautions. Those sorts need sort introduction as well. For
instance a Data-name-p is a COBOL identifier. Thereto we
generate a module that takes care of the prefixing of lexi-
cally defined sorts that are used context-free. For example,
for Data-name-p we rename the original name in the lexical
syntax by Data-name-lex-p and we define a context-free
rule in a specially created module with the following form:

X-s Data-name-lex-p -> Data-name-p

Once we have interspersed the input grammar with the
extra sort X-s, we call this an extended grammar, or an
X grammar. In Section 5 we will come back on how we
generate X grammars.

We process with the fourth box of Figure 1. For a start,
as was seen in the example COBOL fragment, the scaffold-
ing itself makes use of constructs of the COBOL language.
In this case we mean the COBOL variable TMP. We have
experienced that it is useful to have access to the entire
language inside the scaffolding. Since we still wish to have
the scaffolding language as fixed as possible, we put in this
language an extra layer to deal with this phenomenon: all
the code that can appear as information in scaffolding is
known as DATA. We automatically generate a module that
will make any sort of the input grammar also to be of sort
DATA. For instance this means that for the above COBOL
grammar rule we generate:

Corr ":Corr" -> DATA
A-exp ":A-exp" -> DATA
Data-name-p ":Data-name-p" -> DATA
Statement ":Statement" -> DATA

The :Data-name-p part is present for typing reasons:
then we can see that TMP is of type Data-name-p. In the
fourth box we also generate a native pattern language. This
is a language that enables us to write patterns that look as
much as possible like the original code. We kindly refer
the reader to an extensive treatment of native pattern lan-
guages in paper [37]. Furthermore, we generate some auxil-
iary technical functionality that makes the construction of
tools more easy. Finally, we generate for the X grammar a
generic analysis and transformation framework as discussed
in great detail in [10]. The analysis and transformation
framework for scaffolding is directly imported by the lan-
guage dependent analysis and transformation framework.



In the last box of Figure 1, we depicted that we can build
tools. When we have this complete architecture, we are in
a position to construct renovation tools, like analysis and
transformation components. Moreover we can use scaffold-
ing in them. Since the focus in this paper is not on tools,
but on scaffolding and its use we will not discuss tools in
detail. In many other papers, we focus more on tools, and
the reader is kindly invited to consult the various papers of
the authors.

4 Syntax and Semantics of Scaffold-
ing

The scaffolding language that we designed is a very simple
language with a very simple semantics. The purpose of this
language is that it is possible to scaffold relevant informa-
tion that can be processed conveniently. Below we depict
the SDF syntax [18] of the most important library module
containing the heart of the scaffolding language.

imports Data
exports
sorts COMMENT SCAFFOLD X X-s
context-free syntax
SCAFFOLD -> X
COMMENT -> X
X* -> X-s
"SCAFFOLD" "[" DATA-s "]" -> SCAFFOLD
variables
nxn [0_9]* ->
Ly €L [0_9]* ->
"X+" [0-9]% ->
hiddens
variables
"dx" [0-9]+ -> DATA *

pd bd b4
+ *

The only structure in this module is that the extension
sort X is either of sort SCAFFOLD or of sort COMMENT. We
have not implemented what COMMENT is, for this is language
dependent and defined in a syntax module of language L if
we want to renovate code written in L. Here we know that
whatever the syntax of the comments is, it is also of sort X.
The form of the scaffolding is partly defined. We chose to
use prefix notation using the keyword SCAFFOLD and using
text-brackets. The contents of the scaffolding is however
language dependent. Inside a scaffolding everything is a list
of zero or more objects of type DATA. We declare variables of
sort X, and their list variants: X*, X+ zero resp. one or more
occurrences of X. Finally we have hidden variables that are
used locally to express the semantics. We give the semantics
of the above syntax in an ASF module [4]:

equations

[1] SCAFFOLD [ d*1 ] SCAFFOLD [ d*2 ] =
SCAFFOLD [ d*1 d*2 ]

[2] X*1 SCAFFOLD [ ] X*2 = X*x1 Xx2

Equation [1] expresses that two consecutive occurrences
of SCAFFOLD reduce to one. In equation [2] we express
that an empty SCAFFOLD can be omitted. Note that X*1,
X*2 are lists of arbitrary SCAFFOLDs or COMMENTs. The dx*
variables represent arbitrary lists of type DATA. We proceed
to present the DATA syntax and semantics. We simplified
the definition slightly for the sake of clarity.

imports LayoutChars
exports
sorts DATA DATA-s SCAFFOLD-TYPE
lexical syntax
[A-Z_]+ -> SCAFFOLD-TYPE
context-free syntax

SCAFFOLD-TYPE "[" DATA-s "]" =-> DATA
DATA=* -> DATA-s
hiddens
variables

"dx" [0-9]* -> DATA *
"d" [0-9]* -> DATA
"gt" -> SCAFFOLD-TYPE

We import some LayoutChars, which we will not discuss
since it just describes layout. As can be seen we define a
SCAFFOLD-TYPE lexically. This means that we can define our
own types of scaffolding. Since they are necessary for many
and diverse tasks, it is not a good idea to invent a fixed num-
ber of scaffold types. We have chosen to use upper-case and
underscores for SCAFFOLD-TYPEs; this choice is completely
arbitrary and can be changed at wish. Subsequently, we de-
fine the language independent parts of the sort DATA. DATA
can either be typed using a SCAFFOLD-TYPE and the text
brackets, or untyped. We noted earlier that in order to be
able to reason about language dependent issues like source
code fragments in the scaffolding we generated modules so
that all the sort names are of type DATA. The form of this
syntax has been shown earlier. Finally, we define a few hid-
den variables in order to express the semantics of the above
syntax. The semantics is very simple and discussed below.

equations

[1] d*1 d d*2 d d*3 = d*1 d d*2 d*3

[2] d*1 st [ ] d*x2 = dx1 dx*2

[3] d*1 st [ dx4 ] d*2 st [ d*5 ] dx*3 =
d*1 st [ dx4 d*5 ] d*2 d*3

Equation [1] expresses that double occurring data is re-
moved. Equation [2] implies that scaffold-types that are
empty can be removed. Finally, equation [3] collects data
of the same type.

Details on semantics The ASF equations are inter-
preted by our implementation platform, the ASF+SDF
Meta-Environment [23], as conditional term rewriting sys-
tems with positive/negative premises. The formal semantics
of such systems has been subject of study in [22, 29, 30, 16].
In those papers, the meaning of negative premises in con-
ditional term rewriting is being studied. ASF is a modular
specification mechanism. This is illustrated by the import
relation between the two modules Data and X. A natural
question that arises is whether the defined semantics in the
module Data is preserved when we extend the semantics
with equations in module X. This is guaranteed by a conser-
vative extension theorem that has been proved in [16]. All
this implies that the scaffolding language is not only care-
fully designed but also has a well-defined formal semantics
since the equations are to be interpreted as formal mathe-
matical objects (CTRSses).



5 Generating Extended Grammars

In our opinion, the grammar of the code that needs to be
renovated is the most valuable asset in order to facilitate
automated tool support for renovation. A string of papers
confirming this opinion has been published. We mention [11]
where powerful formatters are generated from context-free
grammars. We mention [35] where a GLR parser generator
for interactive environments is discussed. In the study [10]
an architecture for rapid development of analysis and trans-
formation tools for renovation is discussed. We also generate
so-called native pattern languages from context-free gram-
mars [37]. We mention [39] where we generate reengineering
grammars from compiler grammars. The implementation
system that we use is called the ASF+SDF Meta-Environ-
ment [23]. This is a programming environment where all the
functionality is generated from the context-free grammar.
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Figure 2: The Factory Generator

In this paper, we add one more result: we generate ex-
tended grammars from context-free grammars. In this sec-
tion we elaborate in more detail on an example of the use of

scaffolding: our Factory Generator. The Factory Generator
generates most of the abovementioned issues including ex-
tended grammars from context-free grammars. In Figure 2
we depicted the import graph of the modules that form the
Factory Generator. Note that the dashed rectangles are an
exploded view of the boxes of Figure 1. This might be con-
fusing, for, in Figure 1 we were discussing an architecture
containing extended grammars themselves. Indeed this is
the case, and the reason that this architecture comes back
in our Factory Generator is that it uses scaffolding as well
(as already announced in Section 2). So our Factory Gener-
ator contains scaffolding and generates extension grammars
to handle scaffolding. Seen in this light it is not a surprise
that the Factory Generator is bootstrapped. For, a gram-
mar is described in a formalism that has itself a grammar. In
our case the grammars are described in SDF [18]. We gen-
erate not only syntax but also semantics for the scaffolding
language (as we have discussed briefly). The semantics is
expressed in ASF [4]. So the input of the Factory Generator
is an SDF specification of a language L, and its output is an
ASF+SDF specification. We call this output an L-factory
or a software renovation factory for L, or just a (software
renovation) factory if no confusion about the language can
arise.

We proceed to discuss Figure 2. In the library, we have
reused standard library ASF modules for Booleans and In-
tegers. We implemented the X grammar and the Data gram-
mar that have been discussed in Section 4. The other files
in the library on top of the Data and X have been gen-
erated with an earlier version of the Factory Generator.
We could call that part of the library an X-factory. The
next three dashed rectangles are all generated. Of course,
when we started to implement this, we first had to make
one extended grammar by hand. This is the grammar in
the third dashed box: we reused the ASF+SDF grammar,
called Asdf, from the ASF+SDF Meta-Environment and we
carried out the transformation by hand (this resulted in the
modules X-TERM, X-Asf, X-Sdf, X-Asdf. In those mod-
ules we introduced all the extensions at the right locations
and we isolated the list constructs. The process was iter-
ative: each iteration we implemented the minimal part by
hand so that we could generate a full new version of the Fac-
tory Generator. After a few iterations, we reached a fixed
point, meaning that when we fed the Asdf specification to
the Factory Generator, the generated modules were exactly
the ones in the three boxes on top of the library. We im-
plemented on top of the generated architecture about 100
small tools with the functionality that they generate for any
grammar for a language L written in SDF, an L-factory.

It is out of scope for this paper to discuss all the tools that
we implemented. We restrict ourselves to discussing the
tools that introduce the extended grammar. We take a very
simple input grammar to clarify the process of introducing
the extensions. Consider the simple SDF grammar below.

lexical syntax
[A-Z] -> Character
[0-9]+ -> Number
Character+ -> Word
context-free syntax
Word+ "." -> Sentence



"paragraph" Number "." Sentence+ -> Paragraph

The above grammar describes characters, numbers,
words, sentences, and how to combine this into a paragraph.
When we enter the process, the grammar has already been
changed to isolate list constructions. The reason why we do
this is technical: it enables more easy development of reno-
vation components. We show only the changed syntax part,
and not a number of extra modules that have been created
during the process:

lexical syntax

[A-Z] -> Character
[0-9]+ -> Number
Character+ -> Word
context-free syntax
Word-p "." -> Sentence
"paragraph" Number "." Sentence-p -> Paragraph

On this grammar fragment we will apply six tools that
eventually will introduce the extensions. We will focus on
the use of scaffolding while doing this.

DefLexSorts This tool analyses the grammar and puts a
list of used lexicals on top of the grammar in a scaffolding.
We show the scaffolding below (we removed additional scaf-
folding not related to X-introduction for the sake of clarity):

SCAFFOLD [ DEF_LEX_SORTS [
Character :Id-lex
Number :Id-lex
Word :Id-lex ]]

As can be seen in the input grammar, indeed all the sorts
that have been defined lexically, are extracted in this phase,
and stored in a typed scaffolding.

UsedCFSorts We also want to know which sorts are used
in the context-free syntax. The reason is that only those
lexically defined sorts that can actually occur context-free
are amendable for X—introduction. As we can see, indeed
the list below provides all the context-free used sorts.

SCAFFOLD [ USED_CF_SORTS [
Word :Id-lex
Sentence :Id-lex
Word-s :Id-lex
Sentence-s :Id-lex
Word-p :Id-lex
Number :Id-lex
Sentence-p :Id-lex ]]

Note that a two extra sorts with a —s postfix are defined.
They represent zero or more lists. They are added in an
extra module so that we can also construct tools matching
zero or more statements. Also now, nothing has changed to
the grammar fragment itself.

LexCfSorts This tool lists those lexical sorts that are
used context-free. We can obtain this result by calculat-
ing the difference of the UsedCFSorts scaffolding and the
DefLexSorts scaffolding. As can be seen here, the gram-
mar itself is not analyzed again, but the calculations have
migrated to the analysis results. Indeed, the added scaffold-
ing below shows the right answer:

SCAFFOLD [ LEX_CF_SORTS [
Word :Id-lex
Number :Id-lex 1]

DefineLex-X At this moment we have all the information
that is necessary to inject the sort X in the lexicals that
are relevant. The tool DefinelLex-X just takes the above
scaffolding and creates a module containing the following
syntax:

context-free syntax
X-s Word-lex -> Word
X-s Number-lex =-> Number

In Section 4 we defined that X-s is zero or more occur-
rences of X. This implies that all the original programs can
still be parsed. Also that all comment of these programs
is now recognized, and moreover, scaffolding is allowed and
can be parsed. We are not ready yet.

PostFixLex Now we have introduced the new sorts
Word-lex, Number-lex but we have not yet changed the
original grammar so that the new sort names will be used.
We do that using the tool that will postfix the lexical defini-
tions in the grammar that are used context-free. The lexical
syntax of the grammar fragment is changed thus:

lexical syntax
[A-Z] -> Character
[0-9]+ -> Number-lex
Character+ -> Word-lex

And indeed the sort Character that is not used context-
free is not changed. Now the final step.

Add-X Now we can also change the context-free grammar
using a very simple tool that adds the sort X throughout the
grammar on every location just before a literal. This is the
changed context-free grammar fragment:

context-free syntax
Word-p X-s "." -> Sentence
X-s "paragraph" Number X-s "." Sentence-p -> Paragraph

As an example of what we call an infinitesimal small
transformation, we provide the implementation of the last
transformation.

imports Asdf-Toolbasis
exports
context-free syntax
"Add-X" -> TRANSFORM

equations
[1] Add-X_CfElem(Litl) = X-s Litl

The SDF part imports the entire Factory Generator by
way of Asdf-Toolbasis. Since this generator is itself a fac-
tory, we have access to generic transformation components
as discussed in [10]. The only thing we need to do to build
a tool that can use all the generic functionality is to declare
it being of sort TRANSFORM. After that, we have for each sort
of the Asdf-factory a tool available. We use Add-X_CfElem,
which is the tool that gives access to arbitrary context-free
elements. The variable Lit1 matches an arbitrary literal



(a terminal). When such a literal is matched it is replaced
by X-s followed by the same literal, as expressed in equa-
tion [1].

This section did not only illustrate the generation process
for extended grammars, but it also showed how scaffolding
can be used during development of transformation and anal-
ysis tools. Such tools are typical for the implementation of
software reengineering tasks.

Real factories We have not only used toy examples as
input to our Factory Generator. We have used it to im-
prove and extend the COBOL-factory that we already had.
The extensive experience that we have with the use of our
COBOL software renovation factory was a reliable guideline
for implementing improvements and modifications to it. We
mention a few recent references containing real-world appli-
cations of our COBOL-factory: [8, 37, 38, 36, 13]. We have
reused (and enhanced) the original COBOL grammar that
we made by hand [7]. This was input for the Factory Gen-
erator so that we now have an enhanced COBOL-factory.
One of the enhancements is that we now can use scaffolding
for COBOL analyses and transformations.

We are also implementing a software renovation factory
for Ericsson Software Technology AB. Using CALE (Com-
puter Aided Language Engineering) technology [39] we first
extracted and migrated about 20 grammars of their pro-
prietary language for programming real-time switching sys-
tems (called SSL, short for Switching System Language).
The resulting overall grammar contains about 3000 produc-
tion rules. This specification has been input for the Factory
Generator. We have generated a first version of an SSL-
factory.

It takes about five hours to generate an entire COBOL-
factory. It takes about 50 hours to generate an SSL-factory.
Both times are measured in an interpreted environment. We
also note that our Factory Generator not only generates the
scaffolding, but an entire software renovation factory archi-
tecture. We can speed up the process considerably when we
compile our ASF specifications to C. We refer to [5], for a re-
cent paper on the compilation and memory management of
this compiler, and to [31] for on line benchmarks. We have
not yet compiled our specifications, since we do not generate
new factories quite often. In large reengineering companies
it is not uncommon to have a weekly release of software ren-
ovation factories. For such situations it is of course a better
idea to make use of a compiled Factory Generator. Since
we still make small changes to the generation process while
becoming more and more experienced with scaffolding as
we implemented it, we consider it more convenient to use
an interpreted environment, to enable rapid development.

6 Applications

Applications of scaffolding are usually complex. For, if an
analysis or transformation would be simple, there would be
no need to use scaffolding. Also this is analogous to the
classical use of scaffolding: it is added to keep track of com-
plex situations. This implies that actually explaining an
entire example that makes use of scaffolding is too lengthy

to present here. Instead we will sketch a number of appli-
cations that are particularly suited to use scaffolding both
by us in Section 6.1 and by others in Section 6.2.

6.1 Applications for a Swiss Bank

In a recent study we implemented a systolic algorithm that
structures COBOL/CICS code of a Swiss bank. The goal of
that work was to separate the coordination of the programs
from the computations. This study has been elaborately
discussed in [36]. We will discuss one of the many trans-
formation steps of that process in order to illustrate the
use of scaffolding. One of those steps in the process is that
we move COBOL paragraphs from their original location
to a simulated sub-routine section. Although this so-called
MovePar step is presented as one step in the process in pa-
per [36], it can be decomposed into several steps that make
use of scaffolding.

First we wish to show that it is not easy to move a para-
graph to another place without changing the semantics of
the program. Suppose our goal is to move PAR-2 to another
location. The first-order approximation of this transforma-
tion is:

PAR-1. Sentencel

PAR-2. Sentence2
PAR-3. Sentence3

PAR-1. Sentencel

PERFORM PAR-2
PAR-3. Sentence3

In this example we assume that PAR-2 is now on another
location where it can be called, like has been done in the
modified code. Suppose that PAR-1 is called somewhere.
Then the above transformation is not correct. For, in the
original code when PAR-1 is performed, Sentencel is exe-
cuted and when the paragraph is finished, the control-flow
goes back to the statement below the PERFORM PAR-1. In
the transformed code both Sentencel and Sentence?2 are
executed. So a precondition for moving paragraphs is that
the previous paragraph is not performed somewhere in the
program. We will proceed with the steps that are necessary
to safely move paragraphs to other locations.

Analyze the code We scaffold the paragraphs with cru-
cial information. First of all we only wish to move para-
graphs that are free of jump instructions. Therefore, we
add the following scaffolding to each paragraph (we assume
that in PAR-2 there are no GO TO statements):

SCAFFOLD [ NUMBER_OF_GO [ n1 :Integer ] ]
PAR-1. Sentencel
SCAFFOLD [ NUMBER_OF_GO [ O :Integer ] 1]
PAR-2. Sentence2
SCAFFOLD [ NUMBER_OF_GO [ n2 :Integer ] ]
PAR-3. Sentence3

Furthermore, we need to know the label of the next para-
graph. Therefore, a simple analysis tool takes care of that
scaffold information (we omit the other scaffolding for the
sake of clarity):

PAR-1. Sentencel

SCAFFOLD [ NUMBER_OF_GO [ O :Integer ]
NEXT_PAR [ PAR-3 :Label ] ]

PAR-2. Sentence2

PAR-3. Sentence3



We also need to know whether the previous paragraph is
being performed. So there is an analysis tool that adds this,
too, to the scaffolding:

PAR-1. Sentencel

SCAFFOLD [ NUMBER_OF_GO [ O :Integer ]
NEXT_PAR [ PAR-3 :Label ]
PERFORMED [ FALSE :Boolean ] ]

PAR-2. Sentence2

PAR-3. Sentence3

We also want to know the paragraphs that jump to PAR-2.
We want to know this, so that we can change those GO TO
statements to PERFORMs plus another GO TO statement to
the next paragraph.

PAR-1. Sentencel

SCAFFOLD [ NUMBER_OF_GO [ O :Integer ]
NEXT_PAR [ PAR-3 :Label ]
PERFORMED [ FALSE :Boolean ]
GO_FROM [ PAR-Q :Label ] ]

PAR-2. Sentence2

PAR-3. Sentence3

In the above example PAR-Q is a paragraph on an entirely
different location in the source program. The scaffolding
expresses that in that paragraph a GO TO PAR-2 is made.

Analyze the scaffolding Just like the example where we
made the grammar changes, we will now also analyze the
ensued scaffolding. Using a simple tool we add scaffold-
ing that provides a predicate to all paragraphs that can be
moved. Obviously, PAR-2 satisfies all the conditions, so we
scaffold it TB_MOVED shorthand for to be moved.

PAR-1. Sentencel

SCAFFOLD [ NUMBER_OF_GO [ O :Integer ]
NEXT_PAR [ PAR-3 :Label ]
PERFORMED [ FALSE :Boolean ]
GO_FROM [ PAR-Q :Label ]
TB_MOVED [ PAR-2 :Label ] ]

PAR-2. Sentence2

PAR-3. Sentence3

Then in another step we collect the TB_MOVED at the top
of the program so that in a next step a transformation can
use this information to move all the paragraphs that are
contained in the scaffolding TB_MOVED.

GO TO shifting now we are in a position to use the scaf-
folding so that we can carry out a first transformation step:
in all the paragraphs containing a GO TO PAR-2 we have
to make a change. Recall that in our PAR-Q there was a
call to PAR-2. Below we depicted the original code and the
transformed code:

PAR-Q. Statementix*
IF Conditionl
GO TO PAR-2.

PAR-Q. Statementix*
IF Conditioni
PERFORM PAR-2
GO TO PAR-3.

-->

Note that we turn a GO TO in another GO TO. Therefore,
we call it GO TO shifting. The idea of the algorithm is that
we turn difficult GO TOs into simple ones so that eventually
they all will be eliminated. See [36] for details.

Scaffold paragraphs Now we can safely move PAR-2.
We do this in a few steps. First we put the paragraphs
that can be moved in a scaffolding.

PAR-1. Sentencel
SCAFFOLD [ NUMBER_OF_GO [ O :Integer ]

NEXT_PAR [ PAR-3 :Label 1]

PERFORMED [ FALSE :Boolean ]

GO_FROM [ PAR-1 :Label ]

MOVE_PAR [ PAR-2. Sentence2 :Paragraph ] ]
PAR-3. Sentence3

We do this, since now we can eliminate GO TOs in the
newly created code (for details we refer to [36]). When we
have new jump instructions removed, we can reiterate the
above steps and scaffold more paragraphs, and so on.

Move paragraphs When all the GO TOs are eliminated,
we actually move the paragraphs to their location. We do
this in two steps: first we put the paragraphs each in their
own subroutine section:

SECTION A.
PAR-1. Sentencel
PERFORM PAR-2.
PAR-3. Sentence3
BAR SECTION.
BAR-PARAGRAPH.
STOP RUN.
A-SUBROUTINES SECTION.
PAR-2. Sentence2

As can be seen, the above code is functionally equivalent
to the original code. The difference is that using this al-
gorithm we can slowly separate the business logic from the
control logic.

Remove double sections We move each paragraph that
can be moved to its own section. This means that as soon
as we move more than one paragraph, we have double sub-
routine sections. We remove the double ones with a very
simple tool. This means that we transform:

A-SUBROUTINES SECTION.
PAR-2. Sentence2
A-SUBROUTINES SECTION.
PAR-4. Sentence4d

A-SUBROUTINES SECTION.
PAR-2. Sentence2
PAR-4. Sentence4

-->

As can be seen, all the individual steps are quite simple,
but the resulting transformation is complex. Moreover, we
make extensive use of scaffolding information. These trans-
formations have all the same pattern: first we analyze the
code, then we make calculations on the analysis. This leads
to a conclusion, and we have the right information to carry
out a number of transformations.

6.2 Applications in the Reengineering In-
dustry

Before publication of this paper, we communicated our ideas
on scaffolding source code to Triloc Software Engineering in
the realm of our strategic cooperation. Triloc is working on
a number of applications where scaffolding comes into play.
We briefly summarize a number of their applications.



COBOL margins People familiar with COBOL know
that the left and the right margins may contain comment.
Most of the time we can ignore that comment since at the
left-hand margin we have the line number, and the right
margin reiterates the name of the program. During reno-
vation, we can safely strip this code, and obtain so-called
666-code (see [7] for the etymology of this name). How-
ever, sometimes the margins contain valuable maintenance
records, and some COBOL compiler vendors used the mar-
gins for smart issues. In the latter case we cannot strip
the code before parsing it. Now imagine this margin code:
it occurs on virtual every location in the grammar. This
means that the mechanism of X-introduction is a perfect
means to parse that comment. The idea is that first using
a lexical tool, the column information is put in a scaffold-
ing, and then, a grammar that has been extended can parse
the crucial information. The nice thing here is that we do
not have to adapt the grammar for incorporating the mar-
gins. Of course, after unparsing a lexical tool will put the
appropriate columns back to their location.

COPY member expansion and collapsing A common
problem of parsing code, is that sometimes include state-
ments, of macros must be expanded in order to get gram-
matically correct code. In COBOL this is the COPY state-
ment. In a lexical preprocessing phase it is possible to ex-
pand the contents of the COPY members [13]. This can occur
recursively. Of course, when we are done with the renova-
tions, they have to be collapsed in order to obtain the orig-
inal sources again. It is possible to use scaffolding to keep
track of this process so that the COPY statements can be
expanded and collapsed. In [13] the postprocessing checks
whether the expanded code has changed, and if so, that it
changed in all occurrences. Then the changed code is col-
lapsed to a COPY statement and the code is saved to the
appropriate file.

Substitution memory The above COPY statement has
a simple form of substitution available. Its syntax is COPY
FILE REPLACING A BY B. Scaffolding can be used to memo-
rize the substituted value, so that when the COPY statement
is put back it is still known what substitution has been ap-
plied.

Column corrections The unparser will pretty print ex-
panded and collapsed COPY statements sometimes in a dif-
ferent location. For instance, when we have on a single line

01 COPY X. 03 FOO PIC 99

there is a good chance that this layout is not recovered by
the unparser. A common way of customers to checking the
changes to the software is to run simple lexical comparison
tools like diff on the original code and the transformed
code. In order to avoid differences caused by the unparser, it
is possible to scaffold the above code fragment with precise
column information, so that during postprocessing of the
code the layout idiosyncrasies will be put back in the text.

Variable length margins Sometimes COBOL programs
have no left margin, sometimes there is a 6 character margin,
and sometimes a 7 character margin. This kind of informa-
tion needs to be known after renovation, especially when
the code has been stripped (left and right margins are re-
moved during preprocessing). In a scaffolding the amount
of margin can be stored so that during postprocessing the
correct margins are restored.

7 Conclusions

In this paper we have introduced the concept of scaffold-
ing in a software renovation context. We have explained
that starting from a context-free grammar suited for parsing
code, we can automatically derive an extended context-free
grammar that is targeted towards parsing scaffolded source
code. In order to facilitate a structured approach to scaf-
folding source code, we have designed small but effective
scaffolding syntax and semantics that is automatically in-
terspersed with the grammar of the to-be-renovated code.
We discussed the architecture, called the Factory Generator,
that makes such transformations on grammars possible. We
applied our research on large real-world languages: COBOL
with extensions, and a huge real-time language owned by a
large telecommunications manufacturer. With a string of
applications, both from our own work and form the reengi-
neering industry, we have showed that scaffolding source
code for software renovation is useful.
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