

C A L L I N G F U N C T I O N S W I T H P H P

The simplest way to use stored routines with PHP is to use functions. In the stored procedure tutorials we

discussed the problems associated with functions in MySQL with regard to using select statements. Once

this restriction is lifted functions will become much more useful but we can still use them in their current

form. If you have previous experience of developing PHP then using functions will not be too dissimilar to

methods you may have already used.

In this section we will be creating functions and procedures against the tables contained in the setup.myp

script. If you have previously downloaded this script it may be worth downloading this again as there have

been some minor amendments to the tables.

drop database if exists pers
\g
create database pers
\g
use pers
\g
create table emps(emp_id int NOT NULL,
 emp_name varchar(30),
 dept_id int,
 dept_name varchar(30),
 salary decimal(5,2),
 primary key(emp_id))
\g
insert into emps (emp_id,emp_name,dept_id,salary)
 values (1,'Roger',1,2000.00),(2,'John',2,2500.00),(3,'Alan',1,2100.00)
\g
select * from emps
\g
create table dept (dept_id int NOT NULL,
 description varchar(30),
 primary key(dept_id))
\g
insert into dept (dept_id,description)
 values (1,'Information Technology'),(2,'Sales')
\g
select * from dept
\g

 setup.myp

Lets start by creating a simple function that we can use on our PHP pages. We won't make this too

compilcated so that if we have problems we can be sure that the function is not the problem.

-- MySQL --

create function helloworld() returns varchar(20)
return "Hello World";
//
Query OK, 0 rows affected (0.00 sec)

 helloworld1.myp

Lets just check that the function works at the MySQL command line before we start using it with PHP.

MySQL Stored
Procedure Tutorials

MySQL Triggers MySQL Views MySQL Procedures
and PHP

Downloads Forum & Contact
Information

-- MySQL --

select helloworld() //
+--------------+
| helloworld() |
+--------------+
| Hello World |
+--------------+
1 row in set (0.02 sec)

OK so now lets look at how we call the function from PHP. We will assume some knowledge of PHP so

apologies if we skip over sections of PHP code and focus on the important parts as far as MySQL is

concerned. To start lets build a small section of code to connect to the MySQL server from PHP. To save

space and to make sure errors are kept at a minimum we will be writing straight PHP we won't for the

moment include HTML.

-- PHP --

<?php

$link = mysqli_connect("localhost","root","xxxxxxx");

if (mysqli_connect_errno()) {
echo "error";
exit();
} else { echo "no error"; }
?>

 php_connection.phx

Note : the source file has a .phx extension. This is so that the source can be viewed in the browser. If you

wish to use the source files save them as PHP so you webserver interprets the PHP correctly.

This small PHP program simply tests that you have successfully setup MySQL, PHP and your

webserver.Make sure you set the correct values for the server name, user and password in the following

line.

$link = mysqli_connect("localhost","root","xxxxxxx");

If you load the page in your browser you will see no error if PHP successfully connected to your MySQL

installation. If you see error then this means that there is a problem either with you mysqli_connect

statement or that your MySQL instance is not correctly started or installed.

If you are having problems check the following

∗ Your PHP installation is working

∗ You can connect to MySQL via the command line

∗ Your Webserver is operational

∗ The details in the mysqli_connect string are correct

It's worth making sure you can get the no error message to display before continuing so that it's easier to

eliminate problems in future PHP pages.

Once we have been able to connect to MySQL from PHP we can start to call our functions. The first thing

to do is select the database we want to use, in the case of our example this is PERS the PHP commands

to do this is as follows.

to do this is as follows.

-- PHP --

mysqli_select_db ($link,"pers");

This code is the equivalent of typing use pers; at the MySQL command line. We simply pass in $link which

is the connection we have already established with the mysqli_connect command. We then pass in the

name of the database we wish to use, in this case pers. Next we want to call the function, this is fairly

simple and similar to selecting rows from a table in PHP. This is done using the mysqli_query command

like so.

-- PHP --

$result = mysqli_query($link,"select helloworld()")

Again we pass in the $link object to tell PHP to use the connection we have already established. We then

pass in the select statement we want to run, as we are calling a function and not a select against a table

this is simply select plus the name of the function, in this case helloworld(). The result of the call is

placed into a variable called $result, this will be used to display the results of the select.

At this stage we have a number of options to retrieve the data returned we can use one of three

methods, we can use MYSQLI_NUM to reference the results by number, MYSQLI_ASSOC to reference the

results by name and finally MYSQLI_BOTH which will allows to reference them by both name and number.

Which you use is up to you, we will be using MYSQLI_NUM in this example. We extract the results using

the mysqli_fetch_array command like so.

-- PHP --

$row = mysqli_fetch_array($result, MYSQLI_NUM);

The array of results is fetched into a varaible called $row. This time we don't need to pass in the

connection as we have the results stored in a variable called $result, this is passed into

mysqli_fetch_array along with the MYSQLI_NUM option. We can now use $row to display the value

returned from the function, as we used MYSQLI_NUM we simply use the number to return the value like

so.

-- PHP --

echo $row[0];

This will simply display the value at position 0 in the array. Position 0 is the first column returned by the

select statement, as our call to the function was a simple select position 0 will hold the return value of

our function.

Lets add all of these elements together to create a page which displays the result of our function. One

extra section of code we will add is an if around the call to mysqli_query so that we can trap an error if

the function does not exist or fails to fire.

-- PHP --

<?php

$link = mysqli_connect("localhost","root","xxxxxx");

if (mysqli_connect_errno()) {
 echo "error";
 exit();
}

mysqli_select_db ($link,"pers");

if ($result = mysqli_query($link,"select helloworld()")) {

 $row = mysqli_fetch_array($result, MYSQLI_NUM);

 echo $row[0];

} else { echo "problem :("; }

?>

 php_helloworld.phx

Now load the PHP page in your browser, if all goes to plan you should see the words "Hello World"

displayed. Not particuarly visually stunning but it means we have been able to call a MySQL function via

PHP. If you don't see the "Hello World" run through the checks to verify that you web server, PHP and

MySQL Database are configured correctly.

< Introduction Calling Procedures From PHP >

Last Update : 10/05/2005 22:24 GMT

