My

Stored Procedure Development =y

CALLING PROCEDURES FROM PHP

In the first tutorial we looked at calling functions from PHP, if you have previous experience with using
MySQL with PHP calling functions may have been familier as in essence all we did was call a select
statement which contained the procedure. If we wish to use procedures we can't use them within a select
statement so we therefore have to call them from PHP differently.

There are two methods of retrieving data from procedures, calling a select statement from within the
procedural code to return a restult set or passing values in and out via parameters. In the first example
we will look at using results sets as this will be similar in style to calling functions, then later we will look

at passing parameters in and out of procedures using PHP.

RETURNING RESULT SETS

It may be a side effect or by design but MySQL stored procedures return result sets in a very different way
to most other procedural languages. Simply by using a select statement in the procedure we can return
result sets. For example the folowing procedure lists the name and id of all of the employees in the emps
table.

drop procedure if exists select_emps//

create procedure select_emps()
begin

select emp_id, emp name from emps;

end
//

E

So to get the results all we need to do is call the procedure.

call select_emps() //

T — Fommmmmmmem +
| emp_id | emp_name |
Fommmo— - Fomm oo +
1	Roger
2	John
3	Alan
E - Fommmmmmmen +

3 rows in set (0.00 sec)

Query OK, 0 rows affected (0.02 sec)

Rather than this behaviour being a problem it makes calling the stored procedures from PHP similar to

using tables.

We will assume that you have a working web server, PHP and MySQL installation, if you haven't then
review the calling functions pages to find out what you need and how to verify that it is working

correctly.

| this first example we will be calling the procedure above so if you haven't loaded this yet do this now.
Next we need to create the PHP program, we will go through the code and then combine each stage into
a PHP file which you can all at the end.

The first thing to do is create the connection to the MySQL server, this is done like so.

-« PHP --

<?php
$link = mysqgli_connect("localhost","root", "xxxxxx");

if (mysqli_connect_errno()) {
echo "error";
exit();

}

Make sure you change the parameters to the appropriate values for your setup. Next we need to select

which database we will be using, in our case this is pers

-« PHP --

mysqgli_select_db ($link,"pers");

Now that we have a connection and have selected the database we can cal the procedure. This is doen
using the same method as calling a select statment but rather than using a select statement we use call
as we would if calling the procedure from the MySQL command line. We need to specify a link to the
connect and this is done using Slink as the first parameter. In the actual page this will be enclosed in an

IF statement to catch any errors but for now lets just look at the command.

-~ PHP --

$result = mysqli_query($link,"call select_emps()")

The result of the call to mysqli_query is placed in an object called Sresults. We can then use the
mysqli_fetch_array to return the results to an object called Srow which will hold the results. This is done
like so.

-« PHP --

$row = mysqli_fetch_array($result, MYSQLI_NUM);

In this example we are using MYSQLI_NUM this will return the results to be referenced by number, but
we could use MYSQLI_NAME to reference by name or MYSQL_BOTH so that we can reference them by
both name and number.

As we will be returning a number of rows from the procedure call we will want to loop through the result
set. To do this we can enclose the mysqli_fetch_array in a while loop like so.

-- PHP --

while($row = mysqgli_fetch_array($result, MYSQLI_NUM));

We can now display the output of the procedure call. To do this we use echo like so.

-~ PHP --

echo "Emp ID : ".$row[0]." Name : ".$Srow[l]."
 ";

In our example we are adding in some additional text, the important parts are the two $rowl[]
statements. The first Srow[0] displays the first value in the row that was returned by the stored

procedure, in this case the employees ID number, $row[1] is the second, the employee’'s name.

The final command is a call to mysqli_free_result this clears the memory associated with the result set.
All we need to do is pass in the result we want to clear from memory in our case $result.

-« PHP --

mysqli_ free_ result($result);
We can now combine all of the above sections to produce our PHP page.

<?php

$link = mysqgli_connect("localhost","root",6 "**x**x");

if (mysqli_connect_errno()) {

echo "connection error";

exit();

}

mysqgli_ select_db ($link, "pers");

if ($result = mysqgli_query($link,"call select_emps()")) {
while ($row = mysqli_ fetch_array($result,MYSQLI_NUM)) {

echo "Emp ID : ".$row[0]." Name : ".$row[l]."
 ";

}

mysqli_ free_ result($result);
} else { echo "problem :("; }
2>

E

If you load the PHP file into your browser you should now see a list of employees. If you see the words
"connection error” then you need to review the connection statement, or if you see the words "problem

:(" then there was a problem calling the procedure.

It should be easy to covert this simple page to call other procedures you may have.

USING PARAMETERS

The second method of calling stored procedures is to pass in and return out parameters. This means we
can produce procedures which don't return a result set but just a single value rather like a function, or
infact any number of values.

Lets first look at how return a value from a procedure. We need to create a procedure which returns a
value so lets do that now

drop procedure if exists php helloworld //

create procedure php helloworld(OUT p_out_param VARCHAR(30))
begin

set p_out_param = 'Hello World';

end
//

call php helloworld(@out_val) //
Query OK, 0 rows affected (0.00 sec)

select @out_val //

Fommm = +
| @out_val |
oo +
| Hello World |
oo +

1 row in set (0.00 sec)

=

We can now create a PHP page to call the procedure. We will be using the same connection and database
selection methods as before so we can just take that straight from our previous PHP page.

-- PHP --

$link = mysqli_connect("localhost","root", "***x*");
if (mysqli_connect_errno()) {

echo "connection error";

exit();

}

mysgli_select_db ($link,"pers");

We can now add the code to call the procedure, the important part in this is how we deal with the
parameter that is being returned. In this example we will be returning the value into a MySQL user
variable, a user variable is a method of storing single values in MySQL for the duration of a session. A user
variable is created using the following syntax.

SET @name = 'Roger’;

We can now use the variable, in this case @name, in MySQL SQL statements or pass into procedures. For
example we can simply select it to show it's value like so.

set @name = 'Roger' //
Query OK, 0 rows affected (0.00 sec)

select @name //

1 row in set (0.00 sec)

select emp_id from emps where emp name = @name //
Fmmm +
| emp_id |
tommm————— +
| 1
R +

1 row in set (0.00 sec)

As user variables are stored in MySQL the method we will use in PHP is simply to call the procedure which

will populate the user variable and then call a further select statement to retrieve the value. In the
above example we created the user variable using the SET command but we don't need to do this when
calling the procedure as it will be automatically created and populated when the procedure is called.

The code to call the procedure is as follows.

-- PHP --

if ($result = mysqgli_ query($link,"call php_helloworld(@out_param)")) {

} else { echo "problem :(outer"; }

This will call the procedure and assign the result to the @out_param user variable. You may have noticed
the addition of outer to the else statment, this is because we will be calling a further SQL statement
inside of this code so the outer will be useful when debugging.

The procedure has been called and @out_param holds the value returned we now need to retrieve that

value to the PHP page, as shown above this is simply done by calling a select statement.

-« PHP --

if ($result = mysqgli_query($link, "select @out_param")) {
$row = mysqli_fetch_ array($result, MYSQLI_ NUM);
printf ($row[0]);
mysqgli_ free_result($result);

} else { echo "problem :(inner "; }

This time the call to mysqli_query contains a simple single row, single column result set which we can
fetch and use to display the result. So if we add all of the parts together we can display the php page.

-- PHP --

<?php

$link = mysqgli_connect("localhost","root","trustnol");
if (mysqli_connect_errno()) {

echo "connection error";

exit();

}
mysqgli_ select_db ($link,"pers");
if ($result = mysqgli_query($link,"call php_helloworld(@out_param)")) {
if ($result = mysqli_query($link, "select @out_param")) {
$row = mysqgli fetch array($result, MYSQLI_ NUM);
printf($row[0]);
mysqgli_ free_result($result);
} else { echo "problem :(inner "; }
} else { echo "problem :(outer"; }

?2>

=

IN PARAMETERS

There are two options when looking at when passing parameters into a procedure. We can create a user
variable and then use that variable in the call or we can simply code the parameter into the call to the
procedure. In this section we will use a modified version of the PHPHelloWorld procedure which can
accept a parameter, concatenate this to the word hello and return this via the out parameter.

-- MYSQL --

drop procedure if exists php_helloworld //

create procedure php_helloworld(IN p_in_param VARCHAR(30),0UT p_out_param VARCHAR(30))
begin

set p_out_param = concat('Hello ',p_in_param);

end
//

call php helloworld('Dave',@out_val) //
Query OK, 0 rows affected (0.00 sec)

select @out_val //

TS +
| @out_val |
Fomm e +
| Hello Dave |
e —— +

1 row in set (0.00 sec)

E

Now lets look at our first option, using a user variable in MySQL. All we need to do is call the appropriate
MySQL code to create a user variable.

SET @name = 'Dave’;

This can be done in PHP like so.

-- PHP --

mysgli_query($link, "SET @name = 'Dave'")

All we need to do now is amend our call to the PHPHelloWorld procedure to accept the parameter. As we
have set the user variable this is as simple as just adding the variable name like so.

-« PHP --

mysgli_ query($link, "call php _helloworld(@name, @out_param)")
If we add this to the code used in previous examples we can see the parameter in action.

<?php
$link = mysqli_connect("localhost","root","trustnol");

if (mysqli_connect_errno()) {
echo "connection error";

exit();

}

mysqli_select_db ($link, "pers");

if ($result = mysqli_query($link,"SET @name = 'Dave'")) {
echo "user variable set

";
} else { echo "user variable problem :(

"; }

if ($result = mysqli query($link,"call php_helloworld(@name, @out_param)")) {
if ($result = mysqgli_query($link, "select @out_param")) {

$row = mysqli_ fetch_ array($result, MYSQLI_ NUM);
printf($row[0]);
mysqgli_ free_result($result);
} else { echo "problem :(inner "; }
} else { echo "problem :(outer"; }

S]]

Coding the second method is even simpler than the first. We don't need to set a user variable so we only
need to make an amendment to one of the mysqli calls. As the call to the procedure is a string we can

simply add the parameter in as a literal like so.

-« PHP --

mysqli query($link,"call php helloworld('Dave', @out_param)")
Thats all we need to change. So we can make this change in the PHP page and see the results.

<?php

$link = mysqli_connect("localhost","root","trustnol");
if (mysqli_connect_errno()) {

echo "connection error";

exit();

}

mysqli_select_db ($link,"pers");

if ($result = mysqli query($link,"call php_helloworld('Dave', @out_param)")) {
if ($result = mysqli_query($link, "select @out_param")) {

$row = mysqli fetch array($result, MYSQLI NUM);
printf($row[0]);
mysqgli free result($result);

} else { echo "problem :(inner "; }

} else { echo "problem :(outer"; }

E

2 AT WSC X5 WC csep

Last Update : 10/05/2005 22:24 GMT

