
3. Finding the Median 

We now address the following question: We have N keys, that are completely 
unsorted, and we wish to find the key at rank m so that there are m − 1 keys bigger than 
it, and N − m keys smaller than it. 

When m is 2N , this key is called the median key, and this is the hardest one to 
find. 

One approach to this problem is to sort the entire set and then pick out the median 
key and we are done. This would require about N log2 N comparisons as we saw in the 
previous notes. 

However, it is a waste of time and computing power to sort the entire list when all 
we really want is to identify the median key, without regard to the position of the other 
keys. This leads to the question of whether there is a better way to find the median. Can 
we, for example, find the median in a linear number of comparisons, that is cN 
comparisons, where c is a constant independent of N ? 

If we want to do this for a small or limited sized list of keys, the answer is of 
course yes because log 2 N will be bound by a constant. Thus if we had a thousand keys, 

the fact that log 2 1024 is about 10 shows us that we can certainly find the median with 
under 10 N comparisons. If we went up to a billion keys, then maximum30 N 
comparisons would tell us which key we are looking for. But what about for very large 
N, can we still find a linear upper bound? 

3.1 Probabilistic Method 

If we want to find the median in an efficient and practical way, we can use a 
probabilistic method to give us a very good chance of doing so without much more than 
3N/2 comparisons (However, if luck is against us it could take a great deal more than 
3N/2 comparisons. See the next section for more about this “worst-case” scenario). 
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We can pick a random sample of something like N 2 keys and find the median of 
1 1 

this sample by sorting. This will only require N 2 log N 2 comparisons, and since 2


1 1


log2 N 2 << N 2 for large N, we see that this will take much less than N comparisons. 
We then compare the median of the sample with all the keys not in the sample (which 
requires about N comparisons), and with any luck, it will not be very far from the true 
median rank. 



N
Assume that the sample median turns out to have rank + d , where d is small 

2 
compared to N . We can then immediately eliminate all the keys in our sample that are 
larger than our sample median (or smaller than our sample median if d is negative) and 
then use a tournament sort on the remaining keys to find the true median key. Note that 
we do not actually have to complete the tournament sort, but rather only find the 
d highest ranked keys in order to be able to determine which key is the true median. 
Looking at the previous notes, we see that this tournament sort will take us a maximum 
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comparisons or so. Since d is small, and thus of + d d 
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2Nd log2 + d is small as well, we see that this entire term is really on the order of . 

The big terms here will be N from comparing the median of the sample to the rest 
of the keys in order to find its rank, and 2N from running the tournament, for a total of 

23N . 

3.2 Worst-Case Method 

Now we come to a harder question: Suppose we want to find the median ranked 
key “in worst case.” This means we assume that we get no breaks at all: If we choose a 
key at random, it will turn out to have rank 1 or N and be almost useless to us. Any 
sample we choose will be equally atypical. We will no longer be able to assume, as in 
the previous section, that d is much smaller than N, and our nice error bound will 
disappear. Can we still find the median in a linear number of comparisons?1 

The answer is yes, and in fact this can be done with at most cN comparisons, with 
c under 10. We will find a crude way to do this, which can be improved by various 
clever tricks. 

First notice that if we want to find the median, or any other rank, in at most 10N 
steps we can do that easily if N is less than half a million by using a tournament sort. We 
can use the fact that the second biggest loses only to the biggest to find the second 

N
biggest, then repeat this step − 1 times to get the median. If we wanted a rank lower 

2 
than the median we could do the same thing, just looking at the losers instead of the 
winners. 

1 Notice that in such a case, quicksort is quadratic, since if we pick our keys to insert at random, 
they will always turn out to place only themselves after comparing them to all other keys. Quicksort is a 
commonly used sorting algorithm, so obviously the above situation is not really a practical question. We 
choose to address it because it is interesting and instructive in how to find an upper bound on the number of 
steps required to perform an algorithm 



So suppose that N is much greater than half a million. Our plan is this: find a 
good candidate for the median and compare that candidate with every other key. This 
will establish the rank of the candidate; if it is higher than the rank we seek then we can 
eliminate every key higher than the candidate, and if the candidate is lower than the rank 
we seek we can eliminate all the keys of even lower rank than it, since they cannot 
possibly be the ones we want. Thus, we can reduce our problem of finding the median of 
N keys to a smaller problem of finding an off-median key. 

3.3 Finding a Good Candidate 

So we have our plan, but the big question is how to find a “good” candidate for 
the median. We are assuming that a randomly selected candidate will never be close to 
the median, so we have to come up with a method that guarantees that our candidate is 
somewhat close to the median. The following is a simple plan for doing just that. 

First, we pick a nice odd number above 3, say 5. Having picked 5, we arbitrarily 
split the keys into sets of size 5 (assuming N is divisible by 5; we ignore small 
differences otherwise.) We then sort each set of 5 keys, noting that each one can be 
sorted using a maximum of 7 comparisons (see the exercises at the end for more detail). 
This leaves us with 5N sorted sets of keys. 

Now we take each of the keys of rank 3, the median rank in its set, and find the 
median of this group of 5N median keys. This “median of medians” is our good 
candidate (although in the diagram below we have placed the median of medians in the 
center group of keys as a simplification, note that it could in fact be in any of the groups 
as they are not sorted left to right, only top-down). 



It is important to recognize the apparent circular reasoning in the above algorithm. 
In the previous paragraph, we said that we needed to find the median of the medians. 
However, this entire procedure is designed to help us find the median of a set. So it is 
quite odd that we have to be able to find the median of a set as part of the procedure for 
finding the median of a set. This is an example of recursion. The reason that this works 
is because we are finding the median of N/5 keys, while our algorithm is designed to find 
the median of N keys. Recall in our description of the procedure that we run it several 
times, each time eliminating some of the N keys that are above or below our guess. Thus, 
eventually, N/5 will be so small that it will be trivial to find the median, and our problem 
will be resolved. 

Now, how do we know that the above algorithm actually gives us the “good 
candidate” that we were seeking? We know that the median median key ranks higher 
than half of the other medians, which amount to N 10 of the keys. Since each of these 
medians is ranked above two other keys in its set (seen as yellow in the diagram below), 
we see that the median of medians is guaranteed to be ranked above 

3N 10 

3N 10 keys. We see 

that the median of medians also ranks lower than another keys by a similar 
argument. 

Since we have identified 3N/5 keys that we know are above or below our 
candidate, we can find the exact rank of our candidate by comparing it with the 2N/5 
other keys whose position relative to the median of medians is as yet undetermined. 
When we have found the exact rank, we can find out whether this median median key is 



above or below the true median. If our candidate is above the true median, then all keys 
above it are also above the true median and thus are eliminated from consideration. The 
same logic applies if our candidate is below the true median. 

Thus, once we know the relation between the true median and our median 
median, we can eliminate either those keys we know to rank higher than the median 
median, or those we know to rank lower than it, and we have reduced our problem to a 
smaller one. In particular, here we will eliminate at least 3N/10 of the keys, so our 
problem will be reduced to one with at most 7N/10 keys. 

3.4 Showing that this procedure is linear in the number of comparisons 

Now that we have our procedure, we want to show that it can be done in at most 
cN comparisons, for some c independent of N. As is often the case in mathematics, we 
will introduce a bit of notation to simplify our equations. 

(Let N f ) be the number of comparisons we have to make in order to find the 

(median given N unsorted keys to start with. We seek an upper bound on N f ) in the 
form cN. 

We will use induction to find c. Recall that if N is small enough, then we can find 
the median in a linear number of comparisons. This is our base case. Now, let us assume 
by induction that for all groups of keys of size M, that is smaller than N, the median can 
be found in at most cM comparisons. 

The first step of our procedure involves dividing N into groups of 5 and sorting 
them. As stated before, it takes 7 comparisons to sort 5 keys, and there are N/5 groups of 
5, so it takes 7N/5 comparisons to complete this step. Let us define the number of 

(comparisons that have to be done after this step to be N g ). 

( (We have then that N f ) = N g )+ 57N 

(Now we have to find N g ). Looking at the rest of our procedure, we see we now 
have to find the median of the medians of the groups of 5. We will call this the median 
median key. This step amounts to finding the median of N/5 keys, or in our new 
terminology, 5N f ( ). We then have to compare this with the 2N/5 keys left after the 
first step to find its exact position, eliminate the proper group of 3N/10 keys, put the 
remaining 7N/10 keys into sorted blocks of 5 keys, and then find g (7N 10 ) . In this 
notation, the recursive nature of the procedure is quite evident. 

(So N g ) is the sum of the number of comparisons required in all the steps in the 
previous paragraph. However, in the step where we find the position of the median 
median relative to the 2N/5 other keys, it turns out that we do not need to perform all 
2N/5 comparisons. This is because we do not actually need to find its exact position, 
only on which side of the true median it lies. Furthermore, since the keys are in ordered 



groups of 5, we already have some information. It turns out that only N/10 steps are 
required to figure out which side of the true median our candidate is on (see the exercises 
for more information). 

We also need to figure out how many comparisons are required to put the 
remaining 7N/10 keys into sorted groups of 5 keys. Once again, we have some 
information from our previous sorting which will make this easier. Once we know where 
the median median goes, we will have N/10 sets of sorted 5’s and N/10 sets of sorted 2’s. 
These are the remnants of the sorted 5’s after we have eliminated 3 of their members. 

We can put these remaining keys into sorted blocks of 5 by taking the blocks of 2 
and combining them with solitary keys into blocks of 5, separating groups of 2 to create 
single keys as necessary. Now, if you have done exercise 1 you will see that given a 
group of 5 keys, where two comparisons are already known, only 5 more comparisons are 
needed to put them in order. Now, since there were N/10 sets of 2 keys, a little thinking 
tells us that we can form N/25 groups of 5 from them in the manner described above. 
Since each group of 5 required 5 comparisons to sort, this entire process requires 5N/25 
comparisons total. 

Of course, it is important to note that we are looking at the very worst case 
(scenario in the above calculations, so our value for N g ) will involve an inequality, 

bounded above by the sum of the terms we described above. If you look back over the 
work we have done in this section you will see that we arrive at the following: 

(N g ) ≤ 5N f ( )+ N 10 + 5N 25 + g (7N 10 ) 

(Now, we invoke our inductive hypothesis that M f ) ≤ c M for all M < N . This 

tells us that 5N f ( ) ≤ 5N c ( ) for some c independent of N. 

We need to find an expression for g N ) 10 7 ( . We know that: 

f (7N 10 ) = g (7N 10 )+ [# of co m parison o s put 7t N 10 keys in sorted groups of 5]

We saw that 5N/25 comparisons were needed to put N/5 keys in sorted groups of 
5, when we began with N/10 groups of 2 and N/10 groups of 5. Here we will not use as 
detailed a calculation for the sake of simplicity (but we would get a lower bound if we 



( (did). We know from above that N f ) = N g )+ 
7N 10 

57N . So we shall just 

substitute N = into this equation. This gives us 

f (7N 10 ) = g(7N 10 )+ 49 N 50 . 

Now we employ some algebra to get the bound we are looking for. We use the 
fact that f (7N 10 ) ≤ c(7N 10 ) by induction, to get that g(7N 10 )+ 49 N 50 < c(7N 10 ) 
and thus 

g(7N 10 ) < c(7N 10 )− 49 

( 

N 50 

We see from our expressions for 5N f ( ), g(7N 10 ) , and N g ) above that: 

(N g ) < 5N c ( )+ N 10 + 5N 25 + c(7N 10 )− 49 N 

This simplifies to: 

50 

(N g ) < c(9N 10 )− 17 

( 

N 25 

And if we substitute this into our expression for N f ), we get: 

(N f ) < c(9N 10 )+ 18 

( 

N 25 

Now, we want to get that N f ) < cN . This would be true if c(9N 10 )+ 18 

>c 25 180 

N 25 < cN , 

which works if (. So we see that N f ) requires a linear number of 
comparisons provided that 

c > 2.7 

Exercises 

Exercise 1	 We saw in section 2 many methods that can be used to sort a list of keys, 
and how to figure out about how many comparisons they require. 
However, for very small lists of keys, one can actually figure out the 
number of comparisons required by brute force. Show that you can sort 5 
keys using only 7 comparisons. Use this to show how to start with two 
sorted 2’s and one other and completely sort them using 5 comparisons. 

Hint: We solved this problem by making a drawing where the keys are 
points, and a relationship between two keys is designated by a line 
connecting them. Here is the first few steps: 



Exercise 2 We saw how our median median key lies above 3N/10 keys and below 
another 3N/10 keys. In order to eliminate one of those groups we had to 
find which side of the true median our candidate lies on. Show how N/10 
comparisons can be enough to locate the median median with respect to 
the true median in the worst case (to within 1 or 2). 

Exercise 3 Derive a similar bound dividing into sets of 7 keys rather than the 5 used 
here. What bounds do you get? 

Hint: As a first step, figure out how many comparisons are required to 
sort 7 keys, using 8.1 as a starting point. 

~Edited by Jacob Green 


