
Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

1

Operating Systems - 2010INT
Assignment 2 - The GHOST Dispatcher Shell

Total Marks: 25% of Assessment Due Date: Friday 17th October (5 p.m.)

The Griffith Hypothetical Operating System Testbed (GHOST) is a multiprogramming system with
a four level priority process dispatcher operating within the constraints of finite available resources.

Four-Level Priority Dispatcher
The dispatcher operates at four priority levels:

1. Real-Time processes that must be run immediately on a First Come First Served (FCFS)
basis, pre-empting any other processes running with lower priority. These processes are run
till completion.

2. Normal user processes are run on a three level feedback dispatcher1. The basic timing
quantum of the dispatcher is 1 second. This is also the value for the time quantum of the
feedback scheduler.

Figure 1. Three Level Feedback Dispatcher
The dispatcher needs to maintain two submission queues – Real-Time and User priority - fed from
the job dispatch list. The dispatch list is examined at every dispatcher tick and jobs that “have
arrived” are transferred to the appropriate submission queue. The submission queues are then
examined; any Real-Time jobs are run to completion, pre-empting any other jobs currently running.

The Real-Time priority job queue must be empty before the lower priority feedback dispatcher is
reactivated. Any User priority jobs in the User job queue that can run within available resources
(memory and i/o devices) are transferred to the appropriate priority queue. Normal operation of a
feedback queue will accept all jobs at the highest priority level and degrade the priority after each
completed time quantum. However, this dispatcher has the ability to accept jobs at a lower priority,
inserting them in the appropriate queue. This enables the dispatcher to emulate a simple Round

1 See “Operating Systems”, William Stallings, Prentice Hall, 4th Edition, 2001, pp. 412-414

Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

2

Robin dispatcher if all jobs are accepted at the lowest priority.

Figure 2. Round Robin Dispatcher
When all “ready” higher priority jobs have been completed, the feedback dispatcher resumes by
starting or resuming the process at the head of the highest priority non-empty queue. At the next
tick the current job is suspended (or terminated and its resources released) if there are any other
jobs “ready” of an equal or higher priority.

The logic flow should be as shown below (and as discussed in tutorials):

Figure 3. Dispatcher logic flow

Resource Constraints
The GHOST has the following resources:

• 2 Printers
• 1 Scanner
• 1 Modem
• 2 CD Drives
• 1024 Mbyte Memory available for processes

Low priority processes can use any or all of these resources, but the GHOST dispatcher is notified
of which resources the process will use when the process is submitted. The dispatcher ensures that
each requested resource is solely available to that process throughout its lifetime in the “ready-to-
run” dispatch queues: from the initial transfer from the job queue to the Priority 1-3 queues through
to process completion, including intervening idle time quanta.

Real-Time processes will not need any i/o resources (Printer / Scanner / Modem / CD), but will
obviously require memory allocation – this memory requirement will always be 64 Mbytes or less
for Real-Time jobs.

Memory Allocation

Memory allocation must be as a contiguous block of memory for each process that remains
assigned to the process for the lifetime of that process.

Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

3

Enough contiguous spare memory must be left so that the Real Time processes are not blocked
from execution - 64 Mbytes for a running Real-Time job leaving 960 Mbytes to be shared amongst
“active” User jobs.

The GHOST hardware MMU can not support virtual memory so no swapping of memory to disk is
possible. Neither is it a paged system.

Within these constraints, any suitable memory allocation scheme (First Fit, Next Fit, Best Fit,
Worst Fit, Buddy, etc) may be used.

Processes
Processes on GHOST are simulated by the dispatcher creating a new process for each dispatched
process. This process is a generic process2 that can be used for any priority process. It actually runs
itself at very low priority, sleeping for one second periods and displaying:

1. A message displaying the process ID when the process starts:
2. A regular message every second the process is executed; and
3. A message when the process is Suspended, Continued, or Terminated.

The process will terminate of its own accord after 20 seconds if it is not terminated by your
dispatcher. The process prints out using a randomly generated colour scheme for each unique
process, so that individual “slices” of processes can be easily distinguishable. Use this process
rather than your own.

The life-cycle of a process is:

1. The process is submitted to the dispatcher input queues via an initial process list which
designates the arrival time, priority, processor time required (in seconds), memory block
size and other resources requested.

2. A process is “ready-to-run” when it has “arrived” and all required resources are
available.

3. Any pending Real-Time jobs are submitted for execution on a First Come First Served
basis.

4. If enough resources and memory are available for a lower priority User process, the
process is transferred to the appropriate priority queue within the feedback dispatcher
unit, and the remaining resource indicators (memory list and i/o devices) updated.

5. When a job is started, (fork and exec("process",...)), the dispatcher will display the
job parameters (Process ID, priority, processor time remaining (in seconds), memory
location and block size, and resources requested) before performing the exec.

6. A Real-Time process is allowed to run until its time has expired when the dispatcher
kills it by sending a SIGINT signal to it.

7. A low priority User job is allowed to run for one dispatcher tick (one second) before it is
suspended (SIGTSTP) or terminated (SIGINT) if its time has expired. If suspended, its
priority level is lowered (if possible) and it is re-queued on the appropriate priority queue
as shown in Figure 3 above. To retain synchronisation of output between your dispatcher
and the child process, your dispatcher should wait for the process to respond to a
SIGTSTP or SIGINT signal before continuing (waitpid(p->pid, &status,
WUNTRACED)). To match the performance sequence indicated in Stallings’ comparison of
scheduling policies3 the User job should not be suspended and moved to a lower priority
level unless another process is waiting to be (re)started.

8. Provided no higher priority Real Time jobs are pending in the submission queue, the

2 supplied as “process” on nias:/home2/public/2010int/assign2
3 ibid Figure 9.5 p.405

Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

4

highest priority pending process in the feedback queues is started or restarted (SIGCONT).
9. When a process is terminated, the resources it used are returned to the dispatcher for

reallocation to further processes.
10.When there are no more processes in the dispatch list, the input queues and the feedback

queues, the dispatcher exits.

Dispatch List
The Dispatch List is the list of processes to be processed by the dispatcher. The list is contained in
a text file that is specified on the command line. i.e.

>ghost dispatchlist

Each line of the list describes one process with the following data as a ‘comma-space’ delimited
list:

<arrival time>, <priority>, <processor time>, <Mbytes>, <#printers>, <#scanners>, <#modems>,
<#CDs>

Thus,
12, 0, 1, 64, 0, 0, 0, 0
12, 1, 2, 128, 1, 0, 0, 1
13, 3, 6, 128, 1, 0, 1, 2

would indicate:

1st Job: Arrival at time 12, priority 0 (Real-Time), requiring 1 second of c.p.u. time and 64
Mbytes memory - no i/o resources required.

2nd Job: Arrival at time 12, priority 1 (high priority User job), requiring 2 seconds of c.p.u. time,
128 Mbytes of memory and 1 printer and 1 CD drive.

3rd Job: Arrival at time 13, priority 2 (lowest priority User job), requiring 6 seconds of c.p.u., 128
Mbytes of memory, 1 printer, 1 modem, and 2 CD drives.

The submission text file can be of any length, containing up to 1000 jobs. It will be terminated with
an end-of-line followed by an end-of-file marker.

Dispatcher input lists to test the operation of the individual features of the dispatcher are described
in the tutorials and are contained in the nias:/home2/public/2010int/assign2 folder. It should
be noted that these lists will form the basis of tests that will be applied to your dispatcher during
marking. Operation as described in the tutorials will be expected.

Obviously, your submitted dispatcher will be tested with more complex combinations as well!

A fully functional working example of a dispatcher is presented as the program: “ghost” on
nias:/home2/public/2010int/assign2. If in any doubt as to manner of operation or format of
output, you should refer to this program to observe how your dispatcher is expected to operate.

Assignment Requirements
1. Design a dispatcher that satisfies the above criteria. In a formal design document:

a) Describe and discuss what memory allocation algorithms you could have used and justify
your final design choice.

b) Describe and discuss the structures used by the dispatcher for queuing, dispatching and
allocating memory and other resources.

c) Describe and justify the overall structure of your program, describing the various modules

Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

5

and major functions (descriptions of the function ‘interfaces’ are expected).
d) Discuss why such a multilevel dispatching scheme would be used, comparing it with

schemes used by “real” operating sytems. Outline shortcomings in such a scheme,
suggesting possible improvements.

The formal design document is expected to have in-depth discussions, descriptions and
arguments. The design document is to be submitted separately as a physical paper document.
The design document should NOT include any source code.

2. Implement the dispatcher using the C language (cc or gcc compiler on the nias Sun platform).

3. The source code MUST be extensively commented and appropriately structured to allow your
peers to understand and easily maintain the code. Properly commented and laid out code is much
easier to interpret and it is in your interests to ensure that the person marking your assignment is
able to understand your coding without having to perform mental gymnastics!

4. The assignment code must be electronically submitted before the official deadline specified
above. Details of submission details will be supplied well before the deadline.

5. The electronic submission should contain only source code file(s), include file(s), and a
makefile. No executable program should be included. The marker will be automatically
rebuilding your program from the source code provided. If the submitted code does not compile
it can not be marked!

6. The makefile should generate the binary executable file ghost (all lower case please). A
sample makefile would be:
 # Ian Graham a123456 - 2010int assignment 2
 ghost: ghost.c utility.c ghost.h
 gcc ghost.c utility.c -o ghost

The program ghost is then generated by just typing make at the command line prompt.

Note: the third line MUST begin with a tab

Note: Your name, student number, the course name, your tutorial time and tutor’s name
must appear in ALL submitted files and on all submitted documentation.

Deliverables
1. Source code file(s), include file(s), and a makefile to be electronically submitted as described

below;

2. The design document as outlined in Assignment Requirements section 1 above must be handed
in (or placed in the assignment box) by 5 p.m. on Friday 17th October.

Submission of code
The source code and makefile for your assignment should be saved to the submission area on nias
using the submitOS utility. Please read the HowToSubmitOS file in /home2/public/2010int or on
the course web site in the week before the assignment is due for precise details about how to
submit.

A makefile is required. All files will be copied to the same directory, therefore do not include any
paths in your makefile. The makefile should include all dependencies that build your program. If
a library is included, your makefile should also build the library.

Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

6

To make this clear: do not electronically submit any binary code files. All that is required is your
source code and a makefile. Test your assignment by copying the source code only into an empty
directory and then compile it with your makefile.

The marker will be using a shell script that copies your files to a test directory, performs a make,
and then exercises your dispatcher with a standard set of test files. If this sequence fails due to
wrong names, wrong case for names, wrong version of source code that fails to compile, non-
existence of files etc then the marking sequence will also stop. In this instance, the only marks that
can be awarded will be for the source code and design document.

Marking Criteria
The assignment will be marked out of 170, which will then be scaled to provide 25% of overall
assessment.

70 marks will be allocated for the submitted documentation, which will be judged on depth of
discussion, readability, maintainability, completeness, and demonstration of an understanding of
the problems and your solution:

• Description, discussion and justification of choice of memory allocation algorithms - 20
marks

• Description and discussion of the structures used by the dispatcher - 5 marks
• Description and justification of the program structure and individual modules - 15 marks
• Discussion of dispatching scheme, shortcomings, and possible improvements - 30 marks.

30 marks will be allocated for the source code which will be judged on presentation (incl.
complying with requirements), readability, suitability & maintainability of source code and the
makefile.

The balance of the marks (70) will be based on the operation and functionality of your dispatcher
and how well it performs against the supplied benchmarks:

• Operation of FCFS high priority scheduler - 10 marks
• Operation of User Feedback scheduler - 10 marks
• Operation of User Feedback scheduler in Round Robin mode - 10 marks
• Mixed scheduler operation - 10 marks
• Resource allocation - 10 marks
• Memory management - 10 marks
• Combination of all - 10 marks

Part marks will be awarded for incomplete assignments or programs only providing a subset of the
above requirements. Where only part of the assignment has been attempted a statement to that
effect should be included in the submission.

Administration
Your attention is drawn to the following conditions contained in the Study Guide:

1. To be eligible to pass the subject, students are required to complete all forms of assessment and
achieve at least 40 (forty) percent in the final item of assessment in order to achieve a grade of
“Pass” or above.

2. Non-submission of a piece of assessment will incur a fail grade for the subject.

Operating Systems - 2010INT – Assignment 2 - The GHOST Dispatcher Shell

7

3. Students may work together in researching their assignments but final submission must reflect
the work and original contribution of each individual student.

4. Any dishonest assignments will be dealt with under the rules applying in “The Process of
Assessment, Grading and Dissemination of Results” and Statute 8.2 - Student Good Order as
defined in the University Calendar.

5. Dishonest assignment includes:
• deliberate copying or attempting to copy the work of other students;
• use of or attempting to use information prohibited from use in that form of assessment;
• submitting the work of another as your own; or
• plagiarism (i.e. taking and using as your own the thoughts and writings of another with the

intent to claim the work as your own).

6. Full and detailed acknowledgment (e.g. notation, and/or bibliography) must be provided if
contributions are drawn from the literature in preparation or reports and assignments.

7. All submissions for assessment MUST be word-processed (this does not included electronically
submitted source code).

8. Students must be able to produce a copy of all work submitted if so requested.

9. File directories submitted with assignments must only contain files relating to that assignment.
Submissions containing irrelevant files will NOT be assessed. Files must be named as advised
by the Subject Convenor. Files must have accurate date and time labels attached to them.

10. Assignments MUST be submitted by the due date and time. Extensions may be granted in
exceptional circumstances by written application stating the extenuating circumstances (with
medical certificate or other evidential documents) and MUST be lodged BEFORE the due date.
Before an extension will be granted, a review of the work completed to date MUST be
undertaken with the Subject Convenor.

11. Assignments submitted after the due date/time, without an authorised extension, will be
penalised as follows:

One day (or part thereof) late - 10% of marks are deducted
Two days late - 20% of marks are deducted
Three days late - 30% or marks are deducted
Four days late - is considered a fail

12. Assignments submitted without clear student name, subject, tutorial group number and tutor
identification will not be assessed.

13. Assignments received by fax or email will NOT be accepted.

Dr Ian Graham
9th September 2003

