Entering Gaussian System, Link 0=g16 Input=Si1N.txt Output=Si1N.log Initial command: /apps/commercial/G16/g16/l1.exe "/scratch/x2036a10/recycle/Gau-33834.inp" -scrdir="/scratch/x2036a10/recycle/" Default is to use a total of 64 processors: 64 via shared-memory 1 via Linda Entering Link 1 = /apps/commercial/G16/g16/l1.exe PID= 33835. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2016, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 16 program. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. ****************************************** Gaussian 16: ES64L-G16RevA.03 25-Dec-2016 23-Apr-2021 ****************************************** % nproc=32 Will use up to 32 processors via shared memory. % Mem=4gb --------------------------------------- # opt=modredundant b97d3 def2svp SCF=QC --------------------------------------- 1/18=120,19=15,26=3,38=1/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=43,7=101,11=2,25=1,30=1,71=1,74=-59/1,2,3; 4//1; 5/5=2,8=3,38=5/8; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=43,7=101,11=2,25=1,30=1,71=1,74=-59/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,8=3,38=5/8; 7//1,2,3,16; 1/18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 N -1.12585 0.73649 0. H -1.70194 0.86622 -0.83118 H -1.70194 0.86622 0.83118 Si 0.023 -0.58035 0. H 0.7458 -1.03454 -1.23113 H 0.7458 -1.03454 1.23113 H -1.32295 -1.26385 0. The following ModRedundant input section has been read: A 1 4 7 S 33 2.0000 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0196 estimate D2E/DX2 ! ! R2 R(1,3) 1.0196 estimate D2E/DX2 ! ! R3 R(1,4) 1.7475 estimate D2E/DX2 ! ! R4 R(4,5) 1.4981 estimate D2E/DX2 ! ! R5 R(4,6) 1.4981 estimate D2E/DX2 ! ! R6 R(4,7) 1.5096 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.2155 estimate D2E/DX2 ! ! A2 A(2,1,4) 117.8613 estimate D2E/DX2 ! ! A3 A(3,1,4) 117.8613 estimate D2E/DX2 ! ! A4 A(1,4,5) 123.0675 estimate D2E/DX2 ! ! A5 A(1,4,6) 123.0675 estimate D2E/DX2 ! ! A6 A(1,4,7) 75.82 Scan ! ! A7 A(5,4,6) 110.5259 estimate D2E/DX2 ! ! A8 A(5,4,7) 107.0319 estimate D2E/DX2 ! ! A9 A(6,4,7) 107.0319 estimate D2E/DX2 ! ! D1 D(2,1,4,5) 34.0685 estimate D2E/DX2 ! ! D2 D(2,1,4,6) -168.5368 estimate D2E/DX2 ! ! D3 D(2,1,4,7) -67.2341 estimate D2E/DX2 ! ! D4 D(3,1,4,5) 168.5368 estimate D2E/DX2 ! ! D5 D(3,1,4,6) -34.0685 estimate D2E/DX2 ! ! D6 D(3,1,4,7) 67.2341 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 EigMax=2.50D+02 EigMin=1.00D-04 Number of optimizations in scan= 34 Number of steps in this run= 31 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.125852 0.736486 0.000000 2 1 0 -1.701940 0.866223 -0.831175 3 1 0 -1.701940 0.866223 0.831175 4 14 0 0.022999 -0.580345 0.000000 5 1 0 0.745798 -1.034536 -1.231133 6 1 0 0.745798 -1.034536 1.231133 7 1 0 -1.322948 -1.263851 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019589 0.000000 3 H 1.019589 1.662350 0.000000 4 Si 1.747542 2.399755 2.399755 0.000000 5 H 2.855745 3.124784 3.722556 1.498138 0.000000 6 H 2.855745 3.722556 3.124784 1.498138 2.462266 7 H 2.010024 2.317694 2.317694 1.509554 2.418260 6 7 6 H 0.000000 7 H 2.418260 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.064194 1.154627 -0.000000 2 1 0 0.284617 1.631114 0.831175 3 1 0 0.284617 1.631114 -0.831175 4 14 0 -0.064194 -0.592915 0.000000 5 1 0 -0.310258 -1.410338 1.231133 6 1 0 -0.310258 -1.410338 -1.231133 7 1 0 1.399365 -0.223121 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 73.7986508 12.5122413 11.9086678 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.4017625199 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.3915049841 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.44D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") The electronic state of the initial guess is 1-A'. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Minimum is close to point 2 DX= 9.31D-03 DF= -9.03D-05 DXR= 3.01D-02 DFR= 9.07D-04 which will be used. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Minimum is close to point 3 DX= 5.39D-02 DF= -2.50D-05 DXR= 8.25D-02 DFR= 6.86D-03 which will be used. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 2 and 3. LinEq1: Iter= 0 NonCon= 1 RMS=1.79D-04 Max=1.53D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.44D-04 Max=1.58D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=8.25D-05 Max=1.02D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.04D-05 Max=1.94D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.87D-06 Max=5.97D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.39D-06 Max=1.04D-05 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.65D-07 Max=6.00D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.71D-08 Max=4.87D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.12D-08 Max=8.21D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.93D-09 Max=1.26D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 5.71D-04 DF= -6.37D-12 DXR= 5.70D-04 DFR= 3.27D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.67D-07 Max=5.11D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.60D-07 Max=2.50D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=7.72D-08 Max=7.84D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.14D-08 Max=3.46D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.04D-09 Max=5.06D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.04D-09 Max=8.75D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.52D-10 Max=1.84D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.99D-11 Max=6.92D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.79D-11 Max=1.58D-10 NDo= 1 Linear equations converged to 5.069D-11 5.069D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.030773276 a.u. after 6 cycles Convg = 0.4207D-10 29 Fock formations. S**2 = 0.0000 -V/T = 2.0038 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") The electronic state is 1-A'. Alpha occ. eigenvalues -- -65.41181 -13.96383 -5.11223 -3.53305 -3.53214 Alpha occ. eigenvalues -- -3.53087 -0.74525 -0.47748 -0.42180 -0.35380 Alpha occ. eigenvalues -- -0.31014 -0.29761 -0.15526 Alpha virt. eigenvalues -- -0.03352 0.03865 0.05412 0.07631 0.10378 Alpha virt. eigenvalues -- 0.11313 0.19899 0.28711 0.30152 0.37623 Alpha virt. eigenvalues -- 0.38645 0.48321 0.50200 0.50749 0.53024 Alpha virt. eigenvalues -- 0.59760 0.60839 0.70528 0.78978 0.81134 Alpha virt. eigenvalues -- 0.84171 0.86048 0.88556 0.91093 1.24653 Alpha virt. eigenvalues -- 1.33025 1.40698 1.47574 1.50462 1.61559 Alpha virt. eigenvalues -- 1.67413 1.67488 1.69673 1.90371 1.90803 Alpha virt. eigenvalues -- 2.02727 2.04022 2.11525 2.14885 2.55935 Alpha virt. eigenvalues -- 2.57483 2.65966 3.01473 3.23418 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 N 6.396193 0.366822 0.366822 0.339608 -0.002068 -0.002068 2 H 0.366822 0.575265 -0.019463 -0.041055 -0.001806 0.002312 3 H 0.366822 -0.019463 0.575265 -0.041055 0.002312 -0.001806 4 Si 0.339608 -0.041055 -0.041055 12.232682 0.332175 0.332175 5 H -0.002068 -0.001806 0.002312 0.332175 0.779022 -0.011632 6 H -0.002068 0.002312 -0.001806 0.332175 -0.011632 0.779022 7 H -0.084067 0.001738 0.001738 0.448621 -0.024001 -0.024001 7 1 N -0.084067 2 H 0.001738 3 H 0.001738 4 Si 0.448621 5 H -0.024001 6 H -0.024001 7 H 0.779946 Mulliken charges: 1 1 N -0.381241 2 H 0.116185 3 H 0.116185 4 Si 0.396847 5 H -0.074002 6 H -0.074002 7 H -0.099973 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.148870 4 Si 0.148870 Electronic spatial extent (au): = 156.5829 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.2989 Y= 0.4862 Z= 0.0000 Tot= 0.5707 Quadrupole moment (field-independent basis, Debye-Ang): XX= -23.6806 YY= -20.5401 ZZ= -20.2984 XY= 2.7658 XZ= -0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.1743 YY= 0.9663 ZZ= 1.2080 XY= 2.7658 XZ= -0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -3.9983 YYY= 8.9032 ZZZ= 0.0000 XYY= 3.5980 XXY= 1.9310 XXZ= 0.0000 XZZ= 0.6405 YZZ= 5.8823 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -47.8522 YYYY= -131.6125 ZZZZ= -49.4352 XXXY= 0.2511 XXXZ= -0.0000 YYYX= 2.6298 YYYZ= 0.0000 ZZZX= -0.0000 ZZZY= 0.0000 XXYY= -33.0502 XXZZ= -16.3548 YYZZ= -28.2959 XXYZ= 0.0000 YYXZ= -0.0000 ZZXY= -0.2955 N-N= 6.439150498411D+01 E-N=-9.521308854035D+02 KE= 3.457000689554D+02 Symmetry A' KE= 3.171532990590D+02 Symmetry A" KE= 2.854676989636D+01 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.019452210 0.063888575 -0.000000000 2 1 0.003772175 -0.002718678 0.001119297 3 1 0.003772175 -0.002718678 -0.001119297 4 14 -0.050156065 -0.039037173 0.000000000 5 1 0.004195120 0.014630164 -0.000338637 6 1 0.004195120 0.014630164 0.000338637 7 1 0.014769265 -0.048674375 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.063888575 RMS 0.023498991 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.109418605 RMS 0.029965792 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02387 0.03741 0.05982 0.09294 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16449 0.16944 Eigenvalues --- 0.16944 0.30727 0.44404 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.70079333D-02 EMin= 2.38747166D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.08361142 RMS(Int)= 0.01223109 Iteration 2 RMS(Cart)= 0.01009433 RMS(Int)= 0.00802696 Iteration 3 RMS(Cart)= 0.00016325 RMS(Int)= 0.00802596 Iteration 4 RMS(Cart)= 0.00000387 RMS(Int)= 0.00802596 Iteration 5 RMS(Cart)= 0.00000009 RMS(Int)= 0.00802596 Iteration 1 RMS(Cart)= 0.00012502 RMS(Int)= 0.00002760 Iteration 2 RMS(Cart)= 0.00002435 RMS(Int)= 0.00002969 Iteration 3 RMS(Cart)= 0.00000475 RMS(Int)= 0.00003054 Iteration 4 RMS(Cart)= 0.00000092 RMS(Int)= 0.00003072 ClnCor: largest displacement from symmetrization is 4.95D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92674 -0.00339 0.00000 -0.00735 -0.00735 1.91939 R2 1.92674 -0.00339 0.00000 -0.00735 -0.00735 1.91939 R3 3.30238 0.02630 0.00000 0.08110 0.08110 3.38347 R4 2.83107 -0.00213 0.00000 -0.01144 -0.01144 2.81963 R5 2.83107 -0.00213 0.00000 -0.01144 -0.01144 2.81963 R6 2.85264 0.00887 0.00000 0.04888 0.04888 2.90152 A1 1.90617 0.00424 0.00000 0.02017 0.01984 1.92601 A2 2.05707 -0.00326 0.00000 -0.02123 -0.02147 2.03559 A3 2.05707 -0.00326 0.00000 -0.02123 -0.02147 2.03559 A4 2.14793 -0.01321 0.00000 -0.08692 -0.10488 2.04305 A5 2.14793 -0.01321 0.00000 -0.08692 -0.10488 2.04305 A6 1.32331 0.10942 0.00000 0.00000 -0.00000 1.32331 A7 1.92904 0.00778 0.00000 0.06655 0.04324 1.97228 A8 1.86806 -0.03272 0.00000 0.13051 0.13007 1.99813 A9 1.86806 -0.03272 0.00000 0.13051 0.13007 1.99813 D1 0.59461 0.03007 0.00000 0.17738 0.17091 0.76552 D2 -2.94152 -0.02901 0.00000 -0.15804 -0.15171 -3.09323 D3 -1.17346 0.00053 0.00000 0.00967 0.00960 -1.16386 D4 2.94152 0.02901 0.00000 0.15804 0.15171 3.09323 D5 -0.59461 -0.03007 0.00000 -0.17738 -0.17091 -0.76552 D6 1.17346 -0.00053 0.00000 -0.00967 -0.00960 1.16386 Item Value Threshold Converged? Maximum Force 0.026297 0.000450 NO RMS Force 0.010393 0.000300 NO Maximum Displacement 0.219788 0.001800 NO RMS Displacement 0.087729 0.001200 NO Predicted change in Energy=-9.349883D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.103583 0.724587 0.000000 2 1 0 -1.665742 0.867415 -0.833798 3 1 0 -1.665742 0.867415 0.833798 4 14 0 -0.014634 -0.696652 -0.000000 5 1 0 0.768336 -0.951816 -1.244252 6 1 0 0.768336 -0.951816 1.244252 7 1 0 -1.425055 -1.303469 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.015697 0.000000 3 H 1.015697 1.667596 0.000000 4 Si 1.790456 2.422330 2.422330 0.000000 5 H 2.804028 3.066399 3.681389 1.492084 0.000000 6 H 2.804028 3.681389 3.066399 1.492084 2.488504 7 H 2.053376 2.337923 2.337923 1.535420 2.546132 6 7 6 H 0.000000 7 H 2.546132 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.049028 1.173406 0.000000 2 1 0 0.310338 1.628683 0.833798 3 1 0 0.310338 1.628683 -0.833798 4 14 0 -0.049028 -0.617050 0.000000 5 1 0 -0.515349 -1.295795 1.244252 6 1 0 -0.515349 -1.295795 -1.244252 7 1 0 1.439609 -0.240919 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 69.2096407 12.1438876 11.6560879 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.6076170053 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.5973792094 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.56D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999902 -0.000000 -0.000000 0.014005 Ang= 1.60 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 3 and 4. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 1 and 2. LinEq1: Iter= 0 NonCon= 1 RMS=2.64D-04 Max=4.19D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.56D-04 Max=1.57D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.13D-05 Max=6.00D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.34D-05 Max=2.64D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.96D-06 Max=4.50D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.20D-06 Max=1.17D-05 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.80D-07 Max=3.24D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.82D-08 Max=8.87D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.38D-08 Max=1.28D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=2.88D-09 Max=2.59D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 8.40D-04 DF= -2.53D-11 DXR= 8.40D-04 DFR= 7.04D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.08D-06 Max=1.16D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=8.44D-07 Max=1.68D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.82D-07 Max=3.00D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=6.99D-08 Max=6.81D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.49D-08 Max=1.22D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.02D-09 Max=6.34D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.38D-09 Max=1.33D-08 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.03D-10 Max=1.34D-09 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.34D-11 Max=1.85D-10 NDo= 1 Linear equations converged to 1.993D-10 1.993D-09 after 8 iterations. SCF Done: E(RB97D3) = -347.042756650 a.u. after 5 cycles Convg = 0.1843D-09 27 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.033685401 0.039035777 -0.000000000 2 1 -0.000320030 -0.001783796 -0.000690860 3 1 -0.000320030 -0.001783796 0.000690860 4 14 -0.058678492 -0.002940177 -0.000000000 5 1 0.001724716 0.005306464 0.000479219 6 1 0.001724716 0.005306464 -0.000479219 7 1 0.022183720 -0.043140937 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.058678492 RMS 0.020158674 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.115647578 RMS 0.028399928 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -1.20D-02 DEPred=-9.35D-03 R= 1.28D+00 TightC=F SS= 1.41D+00 RLast= 4.16D-01 DXNew= 5.0454D-01 1.2478D+00 Trust test= 1.28D+00 RLast= 4.16D-01 DXMaxT set to 5.05D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.02387 0.03738 0.04766 0.09750 0.14685 Eigenvalues --- 0.16000 0.16000 0.16000 0.16926 0.16944 Eigenvalues --- 0.17490 0.29934 0.44404 0.445601000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-7.60072047D-04 EMin= 2.38747166D-02 Quartic linear search produced a step of 0.42176. Iteration 1 RMS(Cart)= 0.04598747 RMS(Int)= 0.00734296 Iteration 2 RMS(Cart)= 0.00336007 RMS(Int)= 0.00668533 Iteration 3 RMS(Cart)= 0.00003999 RMS(Int)= 0.00668527 Iteration 4 RMS(Cart)= 0.00000098 RMS(Int)= 0.00668527 Iteration 1 RMS(Cart)= 0.00071292 RMS(Int)= 0.00012186 Iteration 2 RMS(Cart)= 0.00009475 RMS(Int)= 0.00012870 Iteration 3 RMS(Cart)= 0.00001263 RMS(Int)= 0.00013058 Iteration 4 RMS(Cart)= 0.00000168 RMS(Int)= 0.00013085 Iteration 5 RMS(Cart)= 0.00000022 RMS(Int)= 0.00013088 ClnCor: largest displacement from symmetrization is 8.68D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.91939 0.00049 -0.00310 0.00459 0.00149 1.92088 R2 1.91939 0.00049 -0.00310 0.00459 0.00149 1.92088 R3 3.38347 0.00806 0.03420 0.00306 0.03726 3.42074 R4 2.81963 -0.00040 -0.00483 0.00208 -0.00275 2.81688 R5 2.81963 -0.00040 -0.00483 0.00208 -0.00275 2.81688 R6 2.90152 -0.00333 0.02062 -0.05262 -0.03200 2.86952 A1 1.92601 0.00165 0.00837 -0.00733 -0.00022 1.92579 A2 2.03559 -0.00191 -0.00906 -0.01570 -0.02561 2.00998 A3 2.03559 -0.00191 -0.00906 -0.01570 -0.02561 2.00998 A4 2.04305 -0.01056 -0.04423 -0.01797 -0.07528 1.96778 A5 2.04305 -0.01056 -0.04423 -0.01797 -0.07528 1.96778 A6 1.32331 0.11565 -0.00000 0.00000 0.00000 1.32331 A7 1.97228 -0.00425 0.01824 0.01095 0.00840 1.98068 A8 1.99813 -0.03093 0.05486 0.01192 0.06399 2.06211 A9 1.99813 -0.03093 0.05486 0.01192 0.06399 2.06211 D1 0.76552 0.01904 0.07208 0.03900 0.10471 0.87023 D2 -3.09323 -0.01726 -0.06398 0.00936 -0.04881 3.14114 D3 -1.16386 0.00089 0.00405 0.02418 0.02795 -1.13591 D4 3.09323 0.01726 0.06398 -0.00936 0.04881 -3.14114 D5 -0.76552 -0.01904 -0.07208 -0.03900 -0.10471 -0.87023 D6 1.16386 -0.00089 -0.00405 -0.02418 -0.02795 1.13591 Item Value Threshold Converged? Maximum Force 0.008056 0.000450 NO RMS Force 0.004037 0.000300 NO Maximum Displacement 0.124936 0.001800 NO RMS Displacement 0.047432 0.001200 NO Predicted change in Energy=-2.560866D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.078385 0.720562 0.000000 2 1 0 -1.643741 0.852565 -0.834382 3 1 0 -1.643741 0.852565 0.834382 4 14 0 -0.040852 -0.762765 -0.000000 5 1 0 0.764543 -0.902743 -1.246483 6 1 0 0.764543 -0.902743 1.246483 7 1 0 -1.460452 -1.301776 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.016487 0.000000 3 H 1.016487 1.668765 0.000000 4 Si 1.810176 2.423786 2.423786 0.000000 5 H 2.754129 3.008449 3.634685 1.490629 0.000000 6 H 2.754129 3.634685 3.008449 1.490629 2.492965 7 H 2.058113 2.317536 2.317536 1.518485 2.581385 6 7 6 H 0.000000 7 H 2.581385 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.041845 1.180355 -0.000000 2 1 0 0.345770 1.612567 0.834382 3 1 0 0.345770 1.612567 -0.834382 4 14 0 -0.041845 -0.629820 0.000000 5 1 0 -0.621586 -1.206150 1.246483 6 1 0 -0.621586 -1.206150 -1.246483 7 1 0 1.430373 -0.257838 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 67.1448209 12.0382169 11.6113440 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.3980067848 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.3877226087 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.52D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999954 0.000000 0.000000 0.009614 Ang= 1.10 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 1 and 2. LinEq1: Iter= 0 NonCon= 1 RMS=1.99D-04 Max=3.84D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.15D-04 Max=1.09D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.28D-05 Max=6.80D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.80D-05 Max=1.94D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.41D-06 Max=3.18D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.09D-06 Max=6.60D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.23D-07 Max=2.75D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.01D-08 Max=4.38D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=9.98D-09 Max=7.51D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.90D-09 Max=1.47D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 7.43D-04 DF= -8.75D-12 DXR= 7.42D-04 DFR= 5.52D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=7.88D-07 Max=7.15D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=5.15D-07 Max=9.43D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.58D-07 Max=1.88D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.56D-08 Max=5.33D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.68D-09 Max=6.46D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.85D-09 Max=3.44D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=7.93D-10 Max=6.51D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.29D-10 Max=1.10D-09 NDo= 1 Linear equations converged to 1.409D-10 1.409D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.044859590 a.u. after 5 cycles Convg = 0.1614D-09 26 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.034445335 0.029792553 0.000000000 2 1 -0.001597521 -0.001402645 -0.000026111 3 1 -0.001597521 -0.001402645 0.000026111 4 14 -0.050882449 0.017934573 -0.000000000 5 1 0.000807942 -0.000307513 0.000295743 6 1 0.000807942 -0.000307513 -0.000295743 7 1 0.018016270 -0.044306809 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.050882449 RMS 0.018623001 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.119028541 RMS 0.027929608 Search for a local minimum. Step number 3 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -2.10D-03 DEPred=-2.56D-03 R= 8.21D-01 TightC=F SS= 1.41D+00 RLast= 2.27D-01 DXNew= 8.4853D-01 6.8143D-01 Trust test= 8.21D-01 RLast= 2.27D-01 DXMaxT set to 6.81D-01 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.02387 0.03474 0.07501 0.09979 0.15198 Eigenvalues --- 0.16000 0.16000 0.16534 0.16919 0.16944 Eigenvalues --- 0.17605 0.29353 0.44404 0.445301000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.98287509D-04 EMin= 2.38747166D-02 Quartic linear search produced a step of 0.04556. Iteration 1 RMS(Cart)= 0.01140879 RMS(Int)= 0.00041385 Iteration 2 RMS(Cart)= 0.00026311 RMS(Int)= 0.00032626 Iteration 3 RMS(Cart)= 0.00000017 RMS(Int)= 0.00032626 Iteration 1 RMS(Cart)= 0.00002410 RMS(Int)= 0.00000414 Iteration 2 RMS(Cart)= 0.00000322 RMS(Int)= 0.00000437 Iteration 3 RMS(Cart)= 0.00000043 RMS(Int)= 0.00000443 ClnCor: largest displacement from symmetrization is 1.12D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92088 0.00073 0.00007 0.00175 0.00182 1.92270 R2 1.92088 0.00073 0.00007 0.00175 0.00182 1.92270 R3 3.42074 0.00420 0.00170 0.01645 0.01815 3.43888 R4 2.81688 0.00022 -0.00013 0.00119 0.00107 2.81795 R5 2.81688 0.00022 -0.00013 0.00119 0.00107 2.81795 R6 2.86952 -0.00112 -0.00146 -0.00812 -0.00958 2.85994 A1 1.92579 0.00004 -0.00001 -0.01256 -0.01349 1.91230 A2 2.00998 -0.00113 -0.00117 -0.01709 -0.01884 1.99114 A3 2.00998 -0.00113 -0.00117 -0.01709 -0.01884 1.99114 A4 1.96778 -0.00276 -0.00343 0.00415 0.00044 1.96822 A5 1.96778 -0.00276 -0.00343 0.00415 0.00044 1.96822 A6 1.32331 0.11903 0.00000 0.00000 -0.00000 1.32331 A7 1.98068 -0.01078 0.00038 -0.00871 -0.00878 1.97190 A8 2.06211 -0.02867 0.00292 0.00253 0.00535 2.06746 A9 2.06211 -0.02867 0.00292 0.00253 0.00535 2.06746 D1 0.87023 0.01121 0.00477 0.02910 0.03353 0.90376 D2 3.14114 -0.00898 -0.00222 0.02429 0.02197 -3.12008 D3 -1.13591 0.00111 0.00127 0.02669 0.02775 -1.10816 D4 -3.14114 0.00898 0.00222 -0.02429 -0.02197 3.12008 D5 -0.87023 -0.01121 -0.00477 -0.02910 -0.03353 -0.90376 D6 1.13591 -0.00111 -0.00127 -0.02669 -0.02775 1.10816 Item Value Threshold Converged? Maximum Force 0.004203 0.000450 NO RMS Force 0.001308 0.000300 NO Maximum Displacement 0.029137 0.001800 NO RMS Displacement 0.011477 0.001200 NO Predicted change in Energy=-1.805620D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.072741 0.735981 0.000000 2 1 0 -1.649561 0.843369 -0.831232 3 1 0 -1.649561 0.843369 0.831232 4 14 0 -0.042090 -0.763804 -0.000000 5 1 0 0.768610 -0.906985 -1.243353 6 1 0 0.768610 -0.906985 1.243353 7 1 0 -1.461351 -1.289278 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.017448 0.000000 3 H 1.017448 1.662464 0.000000 4 Si 1.819779 2.420313 2.420313 0.000000 5 H 2.763302 3.013492 3.635271 1.491195 0.000000 6 H 2.763302 3.635271 3.013492 1.491195 2.486705 7 H 2.062206 2.296640 2.296640 1.513415 2.581628 6 7 6 H 0.000000 7 H 2.581628 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.043167 1.188055 0.000000 2 1 0 0.371403 1.603248 0.831232 3 1 0 0.371403 1.603248 -0.831232 4 14 0 -0.043167 -0.631724 -0.000000 5 1 0 -0.630219 -1.208877 1.243353 6 1 0 -0.630219 -1.208877 -1.243353 7 1 0 1.424136 -0.260984 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 67.0855765 11.9465134 11.5415931 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.2539901352 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.2437053059 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.53D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 0.999998 0.000000 0.000000 0.002148 Ang= 0.25 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. LinEq1: Iter= 0 NonCon= 1 RMS=1.84D-04 Max=1.84D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.21D-04 Max=1.08D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.19D-05 Max=8.07D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.34D-05 Max=1.29D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.85D-06 Max=1.63D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.11D-07 Max=5.75D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.94D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.84D-08 Max=1.86D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=4.66D-09 Max=3.59D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=7.21D-10 Max=5.65D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 4.17D-05 DF= -5.68D-14 DXR= 4.17D-05 DFR= 4.94D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.64D-07 Max=2.22D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=7.15D-08 Max=6.57D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.43D-08 Max=2.31D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.02D-08 Max=9.56D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.43D-09 Max=1.54D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.21D-10 Max=6.08D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.91D-10 Max=1.59D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.26D-11 Max=3.32D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=5.60D-12 Max=4.22D-11 NDo= 1 Linear equations converged to 2.716D-11 2.716D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.045165822 a.u. after 4 cycles Convg = 0.1231D-10 25 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.034838536 0.027460902 0.000000000 2 1 -0.001317369 -0.001567929 -0.000069910 3 1 -0.001317369 -0.001567929 0.000069910 4 14 -0.049227966 0.020702890 -0.000000000 5 1 0.000271548 -0.000309687 0.000284337 6 1 0.000271548 -0.000309687 -0.000284337 7 1 0.016481071 -0.044408561 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.049227966 RMS 0.018351685 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.117390712 RMS 0.027533366 Search for a local minimum. Step number 4 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 2 3 4 DE= -3.06D-04 DEPred=-1.81D-04 R= 1.70D+00 TightC=F SS= 1.41D+00 RLast= 7.88D-02 DXNew= 1.1460D+00 2.3643D-01 Trust test= 1.70D+00 RLast= 7.88D-02 DXMaxT set to 6.81D-01 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00598 0.02387 0.08367 0.09980 0.14605 Eigenvalues --- 0.15673 0.16000 0.16000 0.16902 0.16944 Eigenvalues --- 0.19121 0.35082 0.44373 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.75224701D-04 EMin= 5.98190764D-03 Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.03946340 RMS(Int)= 0.00489038 Iteration 2 RMS(Cart)= 0.00310713 RMS(Int)= 0.00391153 Iteration 3 RMS(Cart)= 0.00002673 RMS(Int)= 0.00391146 Iteration 4 RMS(Cart)= 0.00000042 RMS(Int)= 0.00391146 Iteration 1 RMS(Cart)= 0.00000604 RMS(Int)= 0.00000105 Iteration 2 RMS(Cart)= 0.00000083 RMS(Int)= 0.00000112 ClnCor: largest displacement from symmetrization is 2.81D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92270 0.00064 0.00363 0.00276 0.00639 1.92909 R2 1.92270 0.00064 0.00363 0.00276 0.00639 1.92909 R3 3.43888 0.00181 0.03630 0.00743 0.04373 3.48261 R4 2.81795 -0.00006 0.00214 -0.00254 -0.00041 2.81754 R5 2.81795 -0.00006 0.00214 -0.00254 -0.00041 2.81754 R6 2.85994 -0.00004 -0.01916 0.00414 -0.01502 2.84492 A1 1.91230 0.00034 -0.02698 -0.00993 -0.04985 1.86245 A2 1.99114 -0.00149 -0.03768 -0.03177 -0.07570 1.91544 A3 1.99114 -0.00149 -0.03768 -0.03177 -0.07570 1.91544 A4 1.96822 -0.00296 0.00088 0.00391 0.00477 1.97299 A5 1.96822 -0.00296 0.00088 0.00391 0.00477 1.97299 A6 1.32331 0.11739 -0.00000 0.00000 -0.00000 1.32331 A7 1.97190 -0.01011 -0.01757 -0.00253 -0.02012 1.95178 A8 2.06746 -0.02851 0.01070 -0.00127 0.00940 2.07686 A9 2.06746 -0.02851 0.01070 -0.00127 0.00940 2.07686 D1 0.90376 0.01082 0.06706 0.03379 0.09730 1.00107 D2 -3.12008 -0.00862 0.04394 0.03720 0.07758 -3.04249 D3 -1.10816 0.00110 0.05550 0.03550 0.08744 -1.02071 D4 3.12008 0.00862 -0.04394 -0.03720 -0.07758 3.04249 D5 -0.90376 -0.01082 -0.06706 -0.03379 -0.09730 -1.00107 D6 1.10816 -0.00110 -0.05550 -0.03550 -0.08744 1.02071 Item Value Threshold Converged? Maximum Force 0.001808 0.000450 NO RMS Force 0.000943 0.000300 NO Maximum Displacement 0.097759 0.001800 NO RMS Displacement 0.040545 0.001200 NO Predicted change in Energy=-6.592789D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.051746 0.787713 0.000000 2 1 0 -1.660856 0.802225 -0.819063 3 1 0 -1.660856 0.802225 0.819063 4 14 0 -0.045000 -0.755925 -0.000000 5 1 0 0.774701 -0.918103 -1.234831 6 1 0 0.774701 -0.918103 1.234831 7 1 0 -1.469027 -1.244367 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020828 0.000000 3 H 1.020828 1.638126 0.000000 4 Si 1.842920 2.389495 2.389495 0.000000 5 H 2.787566 3.010703 3.620766 1.490979 0.000000 6 H 2.787566 3.620766 3.010703 1.490979 2.469662 7 H 2.074481 2.212736 2.212736 1.505466 2.581777 6 7 6 H 0.000000 7 H 2.581777 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.048775 1.209165 -0.000000 2 1 0 0.453491 1.554064 0.819063 3 1 0 0.453491 1.554064 -0.819063 4 14 0 -0.048775 -0.633755 0.000000 5 1 0 -0.646765 -1.217380 1.234831 6 1 0 -0.646765 -1.217380 -1.234831 7 1 0 1.410821 -0.264962 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.7326256 11.7598771 11.4202009 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 62.9694629501 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 62.9591502648 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.56D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999979 -0.000000 -0.000000 0.006445 Ang= 0.74 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 1 and 2. LinEq1: Iter= 0 NonCon= 1 RMS=1.95D-04 Max=1.53D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.63D-04 Max=2.34D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.04D-04 Max=1.51D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.71D-05 Max=1.55D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.00D-06 Max=3.50D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.38D-06 Max=1.18D-05 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.76D-07 Max=3.00D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.03D-08 Max=4.57D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.20D-08 Max=1.04D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.74D-09 Max=1.63D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -2.71D-05 DF= 0.00D+00 DXR= 2.71D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.50D-07 Max=4.11D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.74D-07 Max=2.79D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.04D-08 Max=6.90D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.92D-08 Max=2.57D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.70D-09 Max=2.67D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.02D-09 Max=1.10D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.15D-10 Max=2.19D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.13D-11 Max=9.69D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.38D-11 Max=1.14D-10 NDo= 1 Linear equations converged to 6.537D-11 6.537D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.045820326 a.u. after 5 cycles Convg = 0.2549D-10 26 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.033613031 0.021540528 0.000000000 2 1 -0.000439157 -0.000990656 -0.000382549 3 1 -0.000439157 -0.000990656 0.000382549 4 14 -0.044879161 0.025159959 -0.000000000 5 1 -0.000691976 -0.000241450 -0.000155543 6 1 -0.000691976 -0.000241450 0.000155543 7 1 0.013528395 -0.044236277 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.044879161 RMS 0.017436446 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.113301597 RMS 0.026621119 Search for a local minimum. Step number 5 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 2 3 4 5 DE= -6.55D-04 DEPred=-6.59D-04 R= 9.93D-01 TightC=F SS= 1.41D+00 RLast= 2.51D-01 DXNew= 1.1460D+00 7.5335D-01 Trust test= 9.93D-01 RLast= 2.51D-01 DXMaxT set to 7.53D-01 ITU= 1 1 1 1 0 Eigenvalues --- 0.00888 0.02387 0.07695 0.09972 0.13962 Eigenvalues --- 0.15173 0.16000 0.16000 0.16925 0.16944 Eigenvalues --- 0.19621 0.37551 0.44404 0.444291000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 5 4 RFO step: Lambda=-2.70989838D-04. DidBck=F Rises=F RFO-DIIS coefs: 1.64026 -0.64026 Iteration 1 RMS(Cart)= 0.02917975 RMS(Int)= 0.00391998 Iteration 2 RMS(Cart)= 0.00139565 RMS(Int)= 0.00364932 Iteration 3 RMS(Cart)= 0.00000479 RMS(Int)= 0.00364932 Iteration 4 RMS(Cart)= 0.00000007 RMS(Int)= 0.00364932 Iteration 1 RMS(Cart)= 0.00000162 RMS(Int)= 0.00000029 Iteration 2 RMS(Cart)= 0.00000023 RMS(Int)= 0.00000031 ClnCor: largest displacement from symmetrization is 2.31D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92909 0.00056 0.00409 0.00098 0.00507 1.93416 R2 1.92909 0.00056 0.00409 0.00098 0.00507 1.93416 R3 3.48261 -0.00150 0.02800 -0.00745 0.02055 3.50316 R4 2.81754 -0.00022 -0.00026 -0.00063 -0.00089 2.81665 R5 2.81754 -0.00022 -0.00026 -0.00063 -0.00089 2.81665 R6 2.84492 0.00155 -0.00962 0.01060 0.00098 2.84590 A1 1.86245 0.00050 -0.03192 0.00196 -0.04238 1.82007 A2 1.91544 -0.00135 -0.04847 -0.00420 -0.05738 1.85806 A3 1.91544 -0.00135 -0.04847 -0.00420 -0.05738 1.85806 A4 1.97299 -0.00363 0.00306 0.00259 0.00563 1.97862 A5 1.97299 -0.00363 0.00306 0.00259 0.00563 1.97862 A6 1.32331 0.11330 -0.00000 0.00000 0.00000 1.32331 A7 1.95178 -0.00843 -0.01288 0.00867 -0.00423 1.94755 A8 2.07686 -0.02835 0.00602 -0.00750 -0.00148 2.07539 A9 2.07686 -0.02835 0.00602 -0.00750 -0.00148 2.07539 D1 1.00107 0.00957 0.06230 -0.00706 0.05156 1.05263 D2 -3.04249 -0.00859 0.04967 0.00959 0.05560 -2.98689 D3 -1.02071 0.00049 0.05599 0.00127 0.05358 -0.96713 D4 3.04249 0.00859 -0.04967 -0.00959 -0.05560 2.98689 D5 -1.00107 -0.00957 -0.06230 0.00706 -0.05156 -1.05263 D6 1.02071 -0.00049 -0.05599 -0.00127 -0.05358 0.96713 Item Value Threshold Converged? Maximum Force 0.001555 0.000450 NO RMS Force 0.000791 0.000300 NO Maximum Displacement 0.065830 0.001800 NO RMS Displacement 0.029524 0.001200 NO Predicted change in Energy=-1.169236D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.037508 0.822549 0.000000 2 1 0 -1.663375 0.769087 -0.808089 3 1 0 -1.663375 0.769087 0.808089 4 14 0 -0.044838 -0.743068 0.000000 5 1 0 0.773261 -0.924319 -1.232669 6 1 0 0.773261 -0.924319 1.232669 7 1 0 -1.475511 -1.213352 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.023511 0.000000 3 H 1.023511 1.616177 0.000000 4 Si 1.853793 2.357813 2.357813 0.000000 5 H 2.801768 2.997513 3.601320 1.490507 0.000000 6 H 2.801768 3.601320 2.997513 1.490507 2.465338 7 H 2.082484 2.149038 2.149038 1.505985 2.580696 6 7 6 H 0.000000 7 H 2.580696 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.053337 1.221073 -0.000000 2 1 0 0.503865 1.511061 0.808089 3 1 0 0.503865 1.511061 -0.808089 4 14 0 -0.053337 -0.632721 0.000000 5 1 0 -0.647205 -1.223871 1.232669 6 1 0 -0.647205 -1.223871 -1.232669 7 1 0 1.406762 -0.263801 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.4031893 11.6951848 11.3927439 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 62.8720614189 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 62.8617194490 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1452. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.59D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 0.999994 0.000000 0.000000 0.003595 Ang= 0.41 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 1 and 2. LinEq1: Iter= 0 NonCon= 1 RMS=1.16D-04 Max=9.76D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.27D-05 Max=1.15D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.47D-05 Max=7.57D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.50D-05 Max=1.27D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.72D-06 Max=2.64D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.13D-06 Max=8.37D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.68D-07 Max=1.63D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.76D-08 Max=2.85D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.02D-09 Max=6.70D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.14D-09 Max=1.01D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -5.04D-05 DF= -5.68D-14 DXR= 5.04D-05 DFR= 5.01D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.03D-07 Max=1.52D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=7.54D-08 Max=7.17D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.93D-08 Max=2.53D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.67D-09 Max=7.24D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.90D-09 Max=1.73D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.29D-10 Max=7.58D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.35D-10 Max=8.72D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.90D-11 Max=2.74D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=5.67D-12 Max=5.46D-11 NDo= 1 Linear equations converged to 1.900D-11 1.900D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.045875717 a.u. after 5 cycles Convg = 0.6164D-11 26 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1452. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.030679383 0.017759994 0.000000000 2 1 0.000504896 0.000350083 -0.000977340 3 1 0.000504896 0.000350083 0.000977340 4 14 -0.043174330 0.025409467 0.000000000 5 1 -0.000836392 -0.000076662 -0.000309831 6 1 -0.000836392 -0.000076662 0.000309831 7 1 0.013157938 -0.043716302 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.043716302 RMS 0.016697334 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.111301144 RMS 0.026214893 Search for a local minimum. Step number 6 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 3 4 5 6 DE= -5.54D-05 DEPred=-1.17D-04 R= 4.74D-01 Trust test= 4.74D-01 RLast= 1.62D-01 DXMaxT set to 7.53D-01 ITU= 0 1 1 1 1 0 Eigenvalues --- 0.01800 0.02387 0.07464 0.09958 0.13556 Eigenvalues --- 0.15318 0.16000 0.16000 0.16921 0.16944 Eigenvalues --- 0.19455 0.37031 0.44323 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 6 5 4 RFO step: Lambda=-1.40285923D-04. DidBck=F Rises=F RFO-DIIS coefs: 1.09135 -0.94256 0.85121 Iteration 1 RMS(Cart)= 0.03369116 RMS(Int)= 0.00485471 Iteration 2 RMS(Cart)= 0.00174092 RMS(Int)= 0.00445697 Iteration 3 RMS(Cart)= 0.00000885 RMS(Int)= 0.00445696 Iteration 4 RMS(Cart)= 0.00000015 RMS(Int)= 0.00445696 Iteration 1 RMS(Cart)= 0.00001187 RMS(Int)= 0.00000210 Iteration 2 RMS(Cart)= 0.00000167 RMS(Int)= 0.00000223 Iteration 3 RMS(Cart)= 0.00000023 RMS(Int)= 0.00000226 ClnCor: largest displacement from symmetrization is 2.19D-11 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93416 0.00045 -0.00497 0.00126 -0.00371 1.93045 R2 1.93416 0.00045 -0.00497 0.00126 -0.00371 1.93045 R3 3.50316 -0.00138 -0.03535 0.00443 -0.03092 3.47224 R4 2.81665 -0.00019 0.00026 -0.00050 -0.00024 2.81641 R5 2.81665 -0.00019 0.00026 -0.00050 -0.00024 2.81641 R6 2.84590 0.00115 0.01288 -0.00093 0.01195 2.85785 A1 1.82007 0.00073 0.03856 0.00234 0.05556 1.87563 A2 1.85806 0.00007 0.05919 -0.00145 0.06509 1.92314 A3 1.85806 0.00007 0.05919 -0.00145 0.06509 1.92314 A4 1.97862 -0.00405 -0.00355 0.00210 -0.00147 1.97714 A5 1.97862 -0.00405 -0.00355 0.00210 -0.00147 1.97714 A6 1.32331 0.11130 0.00000 0.00000 0.00000 1.32331 A7 1.94755 -0.00784 0.01674 -0.00048 0.01622 1.96377 A8 2.07539 -0.02835 -0.00814 -0.00131 -0.00941 2.06598 A9 2.07539 -0.02835 -0.00814 -0.00131 -0.00941 2.06598 D1 1.05263 0.00873 -0.07812 -0.00224 -0.07642 0.97620 D2 -2.98689 -0.00960 -0.06096 0.00085 -0.05611 -3.04300 D3 -0.96713 -0.00044 -0.06954 -0.00070 -0.06627 -1.03340 D4 2.98689 0.00960 0.06096 -0.00085 0.05611 3.04300 D5 -1.05263 -0.00873 0.07812 0.00224 0.07642 -0.97620 D6 0.96713 0.00044 0.06954 0.00070 0.06627 1.03340 Item Value Threshold Converged? Maximum Force 0.001379 0.000450 NO RMS Force 0.000628 0.000300 NO Maximum Displacement 0.075677 0.001800 NO RMS Displacement 0.033787 0.001200 NO Predicted change in Energy=-9.879479D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.054810 0.782502 0.000000 2 1 0 -1.658679 0.805275 -0.823641 3 1 0 -1.658679 0.805275 0.823641 4 14 0 -0.039879 -0.749187 -0.000000 5 1 0 0.770363 -0.918973 -1.239321 6 1 0 0.770363 -0.918973 1.239321 7 1 0 -1.466765 -1.250255 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021548 0.000000 3 H 1.021548 1.647282 0.000000 4 Si 1.837432 2.390659 2.390659 0.000000 5 H 2.786072 3.007668 3.623409 1.490382 0.000000 6 H 2.786072 3.623409 3.007668 1.490382 2.478642 7 H 2.074080 2.222706 2.222706 1.512307 2.578838 6 7 6 H 0.000000 7 H 2.578838 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.049407 1.205345 -0.000000 2 1 0 0.441401 1.557884 0.823641 3 1 0 0.441401 1.557884 -0.823641 4 14 0 -0.049407 -0.632087 0.000000 5 1 0 -0.631043 -1.221170 1.239321 6 1 0 -0.631043 -1.221170 -1.239321 7 1 0 1.416822 -0.261619 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.7054349 11.8122740 11.4508939 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.0247647302 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.0144537112 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.56D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999986 0.000000 0.000000 -0.005270 Ang= -0.60 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 3 and 4. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 1 and 2. LinEq1: Iter= 0 NonCon= 1 RMS=1.29D-04 Max=1.06D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=5.43D-05 Max=6.39D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.89D-05 Max=2.27D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.97D-06 Max=9.33D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.93D-06 Max=3.71D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.30D-06 Max=9.67D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.12D-07 Max=3.92D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.11D-08 Max=5.60D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.33D-08 Max=7.88D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.44D-09 Max=1.10D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 3.03D-04 DF= -1.53D-12 DXR= 3.03D-04 DFR= 9.44D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.39D-07 Max=3.50D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.58D-07 Max=1.55D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.26D-08 Max=4.83D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.18D-08 Max=1.41D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.44D-09 Max=1.60D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.97D-10 Max=7.36D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.05D-10 Max=1.87D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.28D-11 Max=4.11D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=7.20D-12 Max=5.52D-11 NDo= 1 Linear equations converged to 3.701D-11 3.701D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.045797139 a.u. after 5 cycles Convg = 0.1267D-10 27 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.033337445 0.023237595 -0.000000000 2 1 -0.000283627 -0.001051150 0.000929184 3 1 -0.000283627 -0.001051150 -0.000929184 4 14 -0.048128489 0.022243529 -0.000000000 5 1 -0.000047820 0.000161355 0.000008244 6 1 -0.000047820 0.000161355 -0.000008244 7 1 0.015453939 -0.043701536 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.048128489 RMS 0.017748642 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.113922231 RMS 0.026818794 Search for a local minimum. Step number 7 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 2 3 4 5 6 7 DE= 7.86D-05 DEPred=-9.88D-05 R=-7.95D-01 Trust test=-7.95D-01 RLast= 2.00D-01 DXMaxT set to 3.77D-01 ITU= -1 0 1 1 1 1 0 Eigenvalues --- 0.01641 0.02387 0.04828 0.09958 0.13460 Eigenvalues --- 0.16000 0.16000 0.16618 0.16944 0.17126 Eigenvalues --- 0.17281 0.32789 0.44404 0.463441000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 7 6 5 4 RFO step: Lambda=-2.68932901D-04. EnCoef did 100 forward-backward iterations DidBck=T Rises=T En-DIIS coefs: 0.44603 0.55397 0.00000 0.00000 Iteration 1 RMS(Cart)= 0.02193248 RMS(Int)= 0.00091564 Iteration 2 RMS(Cart)= 0.00096155 RMS(Int)= 0.00024850 Iteration 3 RMS(Cart)= 0.00000030 RMS(Int)= 0.00024850 Iteration 1 RMS(Cart)= 0.00000860 RMS(Int)= 0.00000153 Iteration 2 RMS(Cart)= 0.00000122 RMS(Int)= 0.00000162 Iteration 3 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000165 ClnCor: largest displacement from symmetrization is 1.07D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93045 -0.00060 0.00206 0.00079 0.00285 1.93329 R2 1.93045 -0.00060 0.00206 0.00079 0.00285 1.93329 R3 3.47224 -0.00048 0.01713 -0.00232 0.01481 3.48705 R4 2.81641 -0.00005 0.00013 -0.00104 -0.00091 2.81550 R5 2.81641 -0.00005 0.00013 -0.00104 -0.00091 2.81550 R6 2.85785 -0.00010 -0.00662 0.00625 -0.00037 2.85748 A1 1.87563 -0.00005 -0.03078 0.00117 -0.02877 1.84686 A2 1.92314 -0.00108 -0.03606 -0.00816 -0.04386 1.87929 A3 1.92314 -0.00108 -0.03606 -0.00816 -0.04386 1.87929 A4 1.97714 -0.00408 0.00082 0.00035 0.00118 1.97832 A5 1.97714 -0.00408 0.00082 0.00035 0.00118 1.97832 A6 1.32331 0.11392 -0.00000 0.00000 -0.00000 1.32331 A7 1.96377 -0.00877 -0.00899 0.00938 0.00041 1.96418 A8 2.06598 -0.02838 0.00521 -0.00642 -0.00118 2.06481 A9 2.06598 -0.02838 0.00521 -0.00642 -0.00118 2.06481 D1 0.97620 0.01068 0.04234 -0.00268 0.03988 1.01609 D2 -3.04300 -0.00929 0.03108 0.01130 0.04263 -3.00036 D3 -1.03340 0.00070 0.03671 0.00431 0.04126 -0.99214 D4 3.04300 0.00929 -0.03108 -0.01130 -0.04263 3.00036 D5 -0.97620 -0.01068 -0.04234 0.00268 -0.03988 -1.01609 D6 1.03340 -0.00070 -0.03671 -0.00431 -0.04126 0.99214 Item Value Threshold Converged? Maximum Force 0.001078 0.000450 NO RMS Force 0.000571 0.000300 NO Maximum Displacement 0.049378 0.001800 NO RMS Displacement 0.022460 0.001200 NO Predicted change in Energy=-1.280130D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.042793 0.808124 0.000000 2 1 0 -1.659102 0.779146 -0.816066 3 1 0 -1.659102 0.779146 0.816066 4 14 0 -0.039949 -0.740850 -0.000000 5 1 0 0.767380 -0.921624 -1.239090 6 1 0 0.767380 -0.921624 1.239090 7 1 0 -1.471897 -1.226653 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.023055 0.000000 3 H 1.023055 1.632132 0.000000 4 Si 1.845268 2.366011 2.366011 0.000000 5 H 2.793581 2.993223 3.606120 1.489901 0.000000 6 H 2.793581 3.606120 2.993223 1.489901 2.478180 7 H 2.079530 2.173531 2.173531 1.512111 2.577353 6 7 6 H 0.000000 7 H 2.577353 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052820 1.213804 -0.000000 2 1 0 0.480277 1.524424 0.816066 3 1 0 0.480277 1.524424 -0.816066 4 14 0 -0.052820 -0.631464 0.000000 5 1 0 -0.632271 -1.221969 1.239090 6 1 0 -0.632271 -1.221969 -1.239090 7 1 0 1.413218 -0.261044 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.3818636 11.7743501 11.4383248 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 62.9679376078 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 62.9575994683 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.57D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 0.999996 0.000000 -0.000000 0.002927 Ang= 0.34 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") ExpMin= 7.80D-02 ExpMax= 6.90D+03 ExpMxC= 1.04D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 3630 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 3630 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 3 and 4. LinEq1: Iter= 0 NonCon= 1 RMS=3.09D-04 Max=3.73D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.01D-04 Max=1.68D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.34D-05 Max=9.56D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.55D-05 Max=2.17D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.95D-06 Max=4.33D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.48D-06 Max=1.06D-05 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.21D-07 Max=2.08D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.43D-08 Max=3.90D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.96D-09 Max=6.48D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.40D-09 Max=1.15D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 4.34D-04 DF= -5.34D-12 DXR= 4.34D-04 DFR= 1.86D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.12D-07 Max=1.10D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.23D-07 Max=3.43D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.02D-07 Max=9.66D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.98D-08 Max=3.64D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.10D-09 Max=8.27D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.23D-09 Max=7.39D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.48D-10 Max=4.62D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.65D-11 Max=6.64D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.12D-11 Max=1.25D-10 NDo= 1 Linear equations converged to 7.743D-11 7.743D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.045949529 a.u. after 4 cycles Convg = 0.1223D-09 25 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.031810301 0.020522360 0.000000000 2 1 0.000016709 -0.000090562 0.000402185 3 1 0.000016709 -0.000090562 -0.000402185 4 14 -0.046746995 0.022814273 -0.000000000 5 1 -0.000038587 0.000119512 -0.000042984 6 1 -0.000038587 0.000119512 0.000042984 7 1 0.014980450 -0.043394532 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046746995 RMS 0.017247098 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.112666442 RMS 0.026532901 Search for a local minimum. Step number 8 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 2 3 4 5 6 7 8 DE= -1.52D-04 DEPred=-1.28D-04 R= 1.19D+00 TightC=F SS= 1.41D+00 RLast= 1.23D-01 DXNew= 6.3349D-01 3.6912D-01 Trust test= 1.19D+00 RLast= 1.23D-01 DXMaxT set to 3.77D-01 ITU= 1 -1 0 1 1 1 1 0 Eigenvalues --- 0.01472 0.02387 0.05131 0.09955 0.12884 Eigenvalues --- 0.14989 0.16000 0.16000 0.16913 0.16944 Eigenvalues --- 0.17848 0.32062 0.44404 0.472611000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 8 7 6 5 4 RFO step: Lambda=-2.06562691D-05. DidBck=F Rises=F RFO-DIIS coefs: 1.04126 -0.32281 0.13714 -0.05526 0.19967 Iteration 1 RMS(Cart)= 0.00256752 RMS(Int)= 0.00101001 Iteration 2 RMS(Cart)= 0.00001131 RMS(Int)= 0.00100993 Iteration 3 RMS(Cart)= 0.00000003 RMS(Int)= 0.00100993 Iteration 1 RMS(Cart)= 0.00000884 RMS(Int)= 0.00000156 Iteration 2 RMS(Cart)= 0.00000124 RMS(Int)= 0.00000166 Iteration 3 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000168 ClnCor: largest displacement from symmetrization is 8.27D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93329 -0.00033 -0.00085 0.00003 -0.00082 1.93248 R2 1.93329 -0.00033 -0.00085 0.00003 -0.00082 1.93248 R3 3.48705 -0.00023 -0.00238 0.00049 -0.00189 3.48516 R4 2.81550 0.00000 0.00024 -0.00008 0.00016 2.81566 R5 2.81550 0.00000 0.00024 -0.00008 0.00016 2.81566 R6 2.85748 -0.00025 -0.00052 -0.00087 -0.00139 2.85608 A1 1.84686 -0.00016 -0.00076 -0.00042 0.00222 1.84908 A2 1.87929 -0.00004 0.00327 0.00039 0.00511 1.88440 A3 1.87929 -0.00004 0.00327 0.00039 0.00511 1.88440 A4 1.97832 -0.00400 -0.00130 -0.00015 -0.00144 1.97688 A5 1.97832 -0.00400 -0.00130 -0.00015 -0.00144 1.97688 A6 1.32331 0.11267 -0.00000 0.00000 0.00000 1.32331 A7 1.96418 -0.00868 0.00008 0.00047 0.00057 1.96474 A8 2.06481 -0.02820 0.00094 -0.00023 0.00074 2.06555 A9 2.06481 -0.02820 0.00094 -0.00023 0.00074 2.06555 D1 1.01609 0.01000 -0.00371 -0.00014 -0.00289 1.01320 D2 -3.00036 -0.00978 -0.00596 0.00025 -0.00474 -3.00510 D3 -0.99214 0.00011 -0.00484 0.00005 -0.00381 -0.99595 D4 3.00036 0.00978 0.00596 -0.00025 0.00474 3.00510 D5 -1.01609 -0.01000 0.00371 0.00014 0.00289 -1.01320 D6 0.99214 -0.00011 0.00484 -0.00005 0.00381 0.99595 Item Value Threshold Converged? Maximum Force 0.000328 0.000450 YES RMS Force 0.000175 0.000300 YES Maximum Displacement 0.006166 0.001800 NO RMS Displacement 0.002569 0.001200 NO Predicted change in Energy=-2.751520D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.043456 0.804861 0.000000 2 1 0 -1.658853 0.781904 -0.816405 3 1 0 -1.658853 0.781904 0.816405 4 14 0 -0.040316 -0.742729 -0.000000 5 1 0 0.767347 -0.920601 -1.239394 6 1 0 0.767347 -0.920601 1.239394 7 1 0 -1.471302 -1.229072 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022622 0.000000 3 H 1.022622 1.632809 0.000000 4 Si 1.844268 2.368689 2.368689 0.000000 5 H 2.791474 2.993976 3.607115 1.489985 0.000000 6 H 2.791474 3.607115 2.993976 1.489985 2.478789 7 H 2.078445 2.178467 2.178467 1.511374 2.577364 6 7 6 H 0.000000 7 H 2.577364 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052351 1.212635 0.000000 2 1 0 0.476537 1.528100 0.816405 3 1 0 0.476537 1.528100 -0.816405 4 14 0 -0.052351 -0.631633 -0.000000 5 1 0 -0.633340 -1.220198 1.239394 6 1 0 -0.633340 -1.220198 -1.239394 7 1 0 1.412973 -0.261393 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.4093568 11.7816508 11.4430334 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 62.9824487750 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 62.9721121116 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.57D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000190 Ang= -0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=1.09D-04 Max=1.23D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=3.72D-05 Max=4.59D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.17D-05 Max=1.81D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=5.32D-06 Max=5.01D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.86D-06 Max=1.74D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.78D-07 Max=4.91D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.46D-07 Max=1.18D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.50D-08 Max=3.42D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.69D-09 Max=3.67D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=7.59D-10 Max=4.65D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -7.48D-06 DF= 0.00D+00 DXR= 7.48D-06 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=8.93D-08 Max=9.27D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=7.61D-08 Max=9.93D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.60D-08 Max=2.40D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.14D-08 Max=1.19D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.88D-09 Max=1.63D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.58D-10 Max=4.11D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.06D-10 Max=7.14D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=2.10D-11 Max=1.60D-10 NDo= 1 Linear equations converged to 2.337D-11 2.337D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.045946660 a.u. after 3 cycles Convg = 0.2993D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.032069640 0.020876541 -0.000000000 2 1 -0.000099953 -0.000214751 0.000224686 3 1 -0.000099953 -0.000214751 -0.000224686 4 14 -0.046608491 0.022981192 0.000000000 5 1 -0.000040089 0.000048684 -0.000012520 6 1 -0.000040089 0.000048684 0.000012520 7 1 0.014818935 -0.043525599 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046608491 RMS 0.017291725 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.112919722 RMS 0.026574479 Search for a local minimum. Step number 9 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 2 3 4 5 6 7 8 9 DE= 2.87D-06 DEPred=-2.75D-06 R=-1.04D+00 Trust test=-1.04D+00 RLast= 1.27D-02 DXMaxT set to 1.88D-01 ITU= -1 1 -1 0 1 1 1 1 0 Eigenvalues --- 0.01801 0.02387 0.05205 0.09959 0.12481 Eigenvalues --- 0.12859 0.16000 0.16000 0.16698 0.16944 Eigenvalues --- 0.17322 0.31468 0.44404 0.465911000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 9 8 7 6 5 4 RFO step: Lambda=-2.65864739D-05. DIIS inversion failure, remove point 6. RFO-DIIS uses 5 points instead of 6 EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations DidBck=T Rises=T En-DIIS coefs: 0.16780 0.83220 0.00000 0.00000 0.00000 En-DIIS coefs: 0.00000 Iteration 1 RMS(Cart)= 0.00454626 RMS(Int)= 0.00004438 Iteration 2 RMS(Cart)= 0.00003521 RMS(Int)= 0.00002843 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00002843 Iteration 1 RMS(Cart)= 0.00000745 RMS(Int)= 0.00000132 Iteration 2 RMS(Cart)= 0.00000104 RMS(Int)= 0.00000139 Iteration 3 RMS(Cart)= 0.00000015 RMS(Int)= 0.00000142 ClnCor: largest displacement from symmetrization is 3.39D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93248 -0.00011 0.00068 -0.00027 0.00041 1.93289 R2 1.93248 -0.00011 0.00068 -0.00027 0.00041 1.93289 R3 3.48516 -0.00018 0.00157 0.00136 0.00293 3.48809 R4 2.81566 -0.00002 -0.00013 -0.00007 -0.00020 2.81547 R5 2.81566 -0.00002 -0.00013 -0.00007 -0.00020 2.81547 R6 2.85608 -0.00003 0.00116 -0.00163 -0.00048 2.85561 A1 1.84908 -0.00008 -0.00185 -0.00472 -0.00666 1.84242 A2 1.88440 -0.00022 -0.00425 -0.00462 -0.00891 1.87549 A3 1.88440 -0.00022 -0.00425 -0.00462 -0.00891 1.87549 A4 1.97688 -0.00385 0.00120 -0.00182 -0.00062 1.97626 A5 1.97688 -0.00385 0.00120 -0.00182 -0.00062 1.97626 A6 1.32331 0.11292 -0.00000 0.00000 -0.00000 1.32331 A7 1.96474 -0.00881 -0.00047 0.00110 0.00065 1.96539 A8 2.06555 -0.02817 -0.00062 0.00065 0.00006 2.06561 A9 2.06555 -0.02817 -0.00062 0.00065 0.00006 2.06561 D1 1.01320 0.00996 0.00240 0.00595 0.00832 1.02151 D2 -3.00510 -0.00965 0.00394 0.00417 0.00810 -2.99700 D3 -0.99595 0.00016 0.00317 0.00506 0.00821 -0.98774 D4 3.00510 0.00965 -0.00394 -0.00417 -0.00810 2.99700 D5 -1.01320 -0.00996 -0.00240 -0.00595 -0.00832 -1.02151 D6 0.99595 -0.00016 -0.00317 -0.00506 -0.00821 0.98774 Item Value Threshold Converged? Maximum Force 0.000220 0.000450 YES RMS Force 0.000131 0.000300 YES Maximum Displacement 0.010194 0.001800 NO RMS Displacement 0.004569 0.001200 NO Predicted change in Energy=-5.866590D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.040773 0.809724 0.000000 2 1 0 -1.658552 0.776510 -0.814525 3 1 0 -1.658552 0.776510 0.814525 4 14 0 -0.040549 -0.741598 -0.000000 5 1 0 0.766407 -0.920546 -1.239574 6 1 0 0.766407 -0.920546 1.239574 7 1 0 -1.472472 -1.224388 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022841 0.000000 3 H 1.022841 1.629049 0.000000 4 Si 1.845819 2.363480 2.363480 0.000000 5 H 2.792181 2.990166 3.602741 1.489880 0.000000 6 H 2.792181 3.602741 2.990166 1.489880 2.479148 7 H 2.079417 2.168333 2.168333 1.511122 2.577099 6 7 6 H 0.000000 7 H 2.577099 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052963 1.214246 -0.000000 2 1 0 0.484249 1.521097 0.814525 3 1 0 0.484249 1.521097 -0.814525 4 14 0 -0.052963 -0.631573 0.000000 5 1 0 -0.634200 -1.219249 1.239574 6 1 0 -0.634200 -1.219249 -1.239574 7 1 0 1.412117 -0.261395 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.3317637 11.7756446 11.4424088 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 62.9749114619 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 62.9645684524 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.57D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 0.000643 Ang= 0.07 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=1.90D-04 Max=1.98D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=5.69D-05 Max=5.64D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.84D-05 Max=3.46D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.55D-06 Max=6.27D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.75D-06 Max=3.50D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.18D-07 Max=6.99D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.71D-07 Max=1.85D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.23D-08 Max=5.94D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.18D-08 Max=8.04D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.54D-09 Max=1.06D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -7.27D-05 DF= -1.14D-13 DXR= 7.27D-05 DFR= 4.25D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.87D-07 Max=3.05D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.37D-07 Max=2.80D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.04D-08 Max=8.39D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.71D-08 Max=3.97D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.86D-09 Max=5.32D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.33D-09 Max=1.12D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.28D-10 Max=2.34D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=7.16D-11 Max=6.24D-10 NDo= 1 Linear equations converged to 7.567D-11 7.567D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.045952344 a.u. after 3 cycles Convg = 0.9744D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.031707553 0.020262664 0.000000000 2 1 -0.000056757 0.000016936 -0.000001879 3 1 -0.000056757 0.000016936 0.000001879 4 14 -0.046213121 0.023225950 0.000000000 5 1 -0.000024345 -0.000016125 -0.000012615 6 1 -0.000024345 -0.000016125 0.000012615 7 1 0.014667772 -0.043490235 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046213121 RMS 0.017179161 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.112745402 RMS 0.026525707 Search for a local minimum. Step number 10 out of a maximum of 31 on scan point 1 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 2 3 4 5 6 7 8 9 10 DE= -5.68D-06 DEPred=-5.87D-06 R= 9.69D-01 TightC=F SS= 1.41D+00 RLast= 2.49D-02 DXNew= 3.1674D-01 7.4561D-02 Trust test= 9.69D-01 RLast= 2.49D-02 DXMaxT set to 1.88D-01 ITU= 1 -1 1 -1 0 1 1 1 1 0 Eigenvalues --- 0.01835 0.02387 0.05046 0.09960 0.11725 Eigenvalues --- 0.13018 0.16000 0.16000 0.16709 0.16944 Eigenvalues --- 0.17379 0.31380 0.44404 0.467081000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 10 9 8 7 6 5 4 RFO step: Lambda=-1.49235250D-05. DIIS inversion failure, remove point 7. DIIS inversion failure, remove point 6. DIIS inversion failure, remove point 5. DIIS inversion failure, remove point 4. RFO-DIIS uses 3 points instead of 7 DidBck=F Rises=F RFO-DIIS coefs: 0.94092 -0.01406 0.07314 0.00000 0.00000 RFO-DIIS coefs: 0.00000 0.00000 Iteration 1 RMS(Cart)= 0.00025522 RMS(Int)= 0.00000923 Iteration 2 RMS(Cart)= 0.00000008 RMS(Int)= 0.00000923 Iteration 1 RMS(Cart)= 0.00000732 RMS(Int)= 0.00000129 Iteration 2 RMS(Cart)= 0.00000102 RMS(Int)= 0.00000137 Iteration 3 RMS(Cart)= 0.00000014 RMS(Int)= 0.00000139 ClnCor: largest displacement from symmetrization is 4.77D-11 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93289 0.00004 0.00004 0.00001 0.00004 1.93293 R2 1.93289 0.00004 0.00004 0.00001 0.00004 1.93293 R3 3.48809 -0.00006 -0.00003 -0.00040 -0.00044 3.48766 R4 2.81547 -0.00000 0.00000 -0.00002 -0.00002 2.81545 R5 2.81547 -0.00000 0.00000 -0.00002 -0.00002 2.81545 R6 2.85561 -0.00001 0.00013 -0.00005 0.00008 2.85569 A1 1.84242 -0.00005 0.00023 -0.00043 -0.00020 1.84222 A2 1.87549 0.00005 0.00015 0.00035 0.00050 1.87599 A3 1.87549 0.00005 0.00015 0.00035 0.00050 1.87599 A4 1.97626 -0.00372 0.00014 -0.00008 0.00007 1.97633 A5 1.97626 -0.00372 0.00014 -0.00008 0.00007 1.97633 A6 1.32331 0.11275 0.00000 0.00000 -0.00000 1.32331 A7 1.96539 -0.00888 -0.00008 0.00053 0.00046 1.96585 A8 2.06561 -0.02811 -0.00006 -0.00032 -0.00035 2.06525 A9 2.06561 -0.02811 -0.00006 -0.00032 -0.00035 2.06525 D1 1.02151 0.00972 -0.00028 -0.00022 -0.00051 1.02100 D2 -2.99700 -0.00971 -0.00013 0.00039 0.00027 -2.99673 D3 -0.98774 0.00001 -0.00021 0.00008 -0.00012 -0.98786 D4 2.99700 0.00971 0.00013 -0.00039 -0.00027 2.99673 D5 -1.02151 -0.00972 0.00028 0.00022 0.00051 -1.02100 D6 0.98774 -0.00001 0.00021 -0.00008 0.00012 0.98786 Item Value Threshold Converged? Maximum Force 0.000063 0.000450 YES RMS Force 0.000029 0.000300 YES Maximum Displacement 0.000441 0.001800 YES RMS Displacement 0.000252 0.001200 YES Predicted change in Energy=-7.460591D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0228 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0228 -DE/DX = 0.0 ! ! R3 R(1,4) 1.8458 -DE/DX = -0.0001 ! ! R4 R(4,5) 1.4899 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4899 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5111 -DE/DX = 0.0 ! ! A1 A(2,1,3) 105.5631 -DE/DX = 0.0 ! ! A2 A(2,1,4) 107.4576 -DE/DX = 0.0 ! ! A3 A(3,1,4) 107.4576 -DE/DX = 0.0 ! ! A4 A(1,4,5) 113.2314 -DE/DX = -0.0037 ! ! A5 A(1,4,6) 113.2314 -DE/DX = -0.0037 ! ! A6 A(1,4,7) 75.82 -DE/DX = 0.1127 ! ! A7 A(5,4,6) 112.6086 -DE/DX = -0.0089 ! ! A8 A(5,4,7) 118.3505 -DE/DX = -0.0281 ! ! A9 A(6,4,7) 118.3505 -DE/DX = -0.0281 ! ! D1 D(2,1,4,5) 58.5284 -DE/DX = 0.0097 ! ! D2 D(2,1,4,6) -171.7155 -DE/DX = -0.0097 ! ! D3 D(2,1,4,7) -56.5936 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 171.7155 -DE/DX = 0.0097 ! ! D5 D(3,1,4,6) -58.5284 -DE/DX = -0.0097 ! ! D6 D(3,1,4,7) 56.5936 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01606499 RMS(Int)= 0.00289906 Iteration 2 RMS(Cart)= 0.00019693 RMS(Int)= 0.00289159 Iteration 3 RMS(Cart)= 0.00000165 RMS(Int)= 0.00289159 Iteration 4 RMS(Cart)= 0.00000002 RMS(Int)= 0.00289159 Iteration 1 RMS(Cart)= 0.00232519 RMS(Int)= 0.00042988 Iteration 2 RMS(Cart)= 0.00034516 RMS(Int)= 0.00045646 Iteration 3 RMS(Cart)= 0.00005163 RMS(Int)= 0.00046464 Iteration 4 RMS(Cart)= 0.00000773 RMS(Int)= 0.00046595 Iteration 5 RMS(Cart)= 0.00000116 RMS(Int)= 0.00046615 Iteration 6 RMS(Cart)= 0.00000017 RMS(Int)= 0.00046618 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.037918 0.817993 -0.000000 2 1 0 -1.655999 0.788844 -0.814480 3 1 0 -1.655999 0.788844 0.814480 4 14 0 -0.046764 -0.738867 0.000000 5 1 0 0.761326 -0.918972 -1.238657 6 1 0 0.761326 -0.918972 1.238657 7 1 0 -1.464057 -1.263205 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022864 0.000000 3 H 1.022864 1.628959 0.000000 4 Si 1.845588 2.363665 2.363665 0.000000 5 H 2.790806 2.989987 3.602147 1.489872 0.000000 6 H 2.790806 3.602147 2.989987 1.489872 2.477315 7 H 2.124377 2.216105 2.216105 1.511175 2.570038 6 7 6 H 0.000000 7 H 2.570038 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.053129 1.215896 -0.000000 2 1 0 0.483912 1.523241 0.814480 3 1 0 0.483912 1.523241 -0.814480 4 14 0 -0.053129 -0.629693 0.000000 5 1 0 -0.638075 -1.215598 1.238657 6 1 0 -0.638075 -1.215598 -1.238657 7 1 0 1.424029 -0.310859 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.9042925 11.7597679 11.4426492 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 62.9321105357 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 62.9217845693 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.54D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 0.000000 -0.000000 0.001481 Ang= 0.17 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 3 and 4. LinEq1: Iter= 0 NonCon= 1 RMS=1.78D-04 Max=2.05D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.01D-04 Max=8.74D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.39D-05 Max=6.20D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.68D-06 Max=8.05D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.90D-06 Max=2.01D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.64D-07 Max=5.09D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.73D-07 Max=1.79D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.46D-08 Max=1.95D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=3.20D-09 Max=2.77D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -7.42D-04 DF= -3.41D-12 DXR= 7.42D-04 DFR= 5.51D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.37D-07 Max=3.79D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.52D-07 Max=1.50D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.54D-08 Max=5.37D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.39D-08 Max=1.29D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.70D-09 Max=2.76D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.18D-10 Max=4.05D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.79D-10 Max=1.23D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.05D-11 Max=4.23D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=8.73D-12 Max=7.14D-11 NDo= 1 Linear equations converged to 2.343D-11 2.343D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.050398794 a.u. after 4 cycles Convg = 0.1988D-10 23 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.031685772 0.016357311 0.000000000 2 1 -0.000094598 0.000014453 -0.000129615 3 1 -0.000094598 0.000014453 0.000129615 4 14 -0.046412643 0.024535956 -0.000000000 5 1 0.000021206 -0.000117959 -0.000023290 6 1 0.000021206 -0.000117959 0.000023290 7 1 0.014873654 -0.040686255 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046412643 RMS 0.016767848 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.105142081 RMS 0.024892488 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 2 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01835 0.02387 0.05039 0.09990 0.11534 Eigenvalues --- 0.12910 0.16000 0.16000 0.16694 0.16944 Eigenvalues --- 0.17364 0.31368 0.44404 0.467091000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.65354297D-05 EMin= 1.83527187D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00393140 RMS(Int)= 0.00003994 Iteration 2 RMS(Cart)= 0.00002958 RMS(Int)= 0.00002949 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00002949 Iteration 1 RMS(Cart)= 0.00000027 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 7.87D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93293 0.00016 0.00000 -0.00037 -0.00037 1.93256 R2 1.93293 0.00016 0.00000 -0.00037 -0.00037 1.93256 R3 3.48766 -0.00309 0.00000 -0.01425 -0.01425 3.47341 R4 2.81545 0.00005 0.00000 0.00037 0.00037 2.81582 R5 2.81545 0.00005 0.00000 0.00037 0.00037 2.81582 R6 2.85571 0.00017 0.00000 0.00250 0.00250 2.85821 A1 1.84222 -0.00001 0.00000 0.00571 0.00561 1.84783 A2 1.87599 0.00003 0.00000 0.00832 0.00828 1.88426 A3 1.87599 0.00003 0.00000 0.00832 0.00828 1.88426 A4 1.97497 -0.00408 0.00000 0.00114 0.00113 1.97610 A5 1.97497 -0.00408 0.00000 0.00114 0.00113 1.97610 A6 1.35822 0.10514 0.00000 0.00000 -0.00000 1.35822 A7 1.96319 -0.00825 0.00000 0.00288 0.00287 1.96606 A8 2.05641 -0.02723 0.00000 -0.00278 -0.00278 2.05363 A9 2.05641 -0.02723 0.00000 -0.00278 -0.00278 2.05363 D1 1.02413 0.00953 0.00000 -0.01033 -0.01036 1.01377 D2 -2.99986 -0.00954 0.00000 -0.00420 -0.00423 -3.00408 D3 -0.98786 -0.00001 0.00000 -0.00726 -0.00729 -0.99516 D4 2.99986 0.00954 0.00000 0.00420 0.00423 3.00408 D5 -1.02413 -0.00953 0.00000 0.01033 0.01036 -1.01377 D6 0.98786 0.00001 0.00000 0.00726 0.00729 0.99516 Item Value Threshold Converged? Maximum Force 0.003093 0.000450 NO RMS Force 0.000699 0.000300 NO Maximum Displacement 0.012951 0.001800 NO RMS Displacement 0.003933 0.001200 NO Predicted change in Energy=-2.331400D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.038255 0.811139 -0.000000 2 1 0 -1.654286 0.790947 -0.816056 3 1 0 -1.654286 0.790947 0.816056 4 14 0 -0.046624 -0.736470 0.000000 5 1 0 0.759494 -0.917744 -1.240008 6 1 0 0.759494 -0.917744 1.240008 7 1 0 -1.463619 -1.265410 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022667 0.000000 3 H 1.022667 1.632111 0.000000 4 Si 1.838050 2.362949 2.362949 0.000000 5 H 2.785419 2.987590 3.601855 1.490069 0.000000 6 H 2.785419 3.601855 2.987590 1.490069 2.480016 7 H 2.119667 2.220564 2.220564 1.512499 2.569187 6 7 6 H 0.000000 7 H 2.569187 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052913 1.210465 0.000000 2 1 0 0.476669 1.525814 0.816056 3 1 0 0.476669 1.525814 -0.816056 4 14 0 -0.052913 -0.627584 -0.000000 5 1 0 -0.633854 -1.215116 1.240008 6 1 0 -0.633854 -1.215116 -1.240008 7 1 0 1.425539 -0.308472 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.9610582 11.8335831 11.5045440 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.0526810228 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.0423506329 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.53D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 1.000000 -0.000000 0.000000 -0.000717 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.51D-04 Max=3.16D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.26D-04 Max=9.12D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.30D-05 Max=4.34D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.09D-05 Max=8.18D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.34D-06 Max=2.50D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.94D-07 Max=7.10D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.23D-07 Max=2.23D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.94D-08 Max=5.63D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.45D-08 Max=9.51D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=2.04D-09 Max=1.28D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 2.72D-04 DF= -2.39D-12 DXR= 2.72D-04 DFR= 7.52D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.04D-07 Max=7.67D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.11D-07 Max=2.34D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.08D-08 Max=9.89D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.00D-08 Max=1.51D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=7.08D-09 Max=7.78D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.77D-10 Max=8.25D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.48D-10 Max=1.69D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=8.18D-11 Max=6.40D-10 NDo= 1 Linear equations converged to 1.255D-10 1.255D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.050428016 a.u. after 3 cycles Convg = 0.1228D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.031137161 0.018537327 0.000000000 2 1 -0.000095574 -0.000042910 0.000121748 3 1 -0.000095574 -0.000042910 -0.000121748 4 14 -0.046504884 0.022542272 -0.000000000 5 1 0.000159762 -0.000019305 0.000100764 6 1 0.000159762 -0.000019305 -0.000100764 7 1 0.015239347 -0.040955169 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046504884 RMS 0.016752684 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.106122709 RMS 0.025130193 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 2 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.92D-05 DEPred=-2.33D-05 R= 1.25D+00 TightC=F SS= 1.41D+00 RLast= 2.76D-02 DXNew= 3.1674D-01 8.2766D-02 Trust test= 1.25D+00 RLast= 2.76D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01894 0.02387 0.05728 0.09987 0.11471 Eigenvalues --- 0.11752 0.16000 0.16000 0.16648 0.16944 Eigenvalues --- 0.17368 0.22307 0.44404 0.468411000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-5.36643278D-06 EMin= 1.89444020D-02 Quartic linear search produced a step of 0.31601. Iteration 1 RMS(Cart)= 0.00144068 RMS(Int)= 0.00001017 Iteration 2 RMS(Cart)= 0.00000160 RMS(Int)= 0.00001006 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001006 Iteration 1 RMS(Cart)= 0.00000025 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 7.43D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93256 -0.00004 -0.00012 0.00003 -0.00009 1.93247 R2 1.93256 -0.00004 -0.00012 0.00003 -0.00009 1.93247 R3 3.47341 -0.00116 -0.00450 -0.00177 -0.00627 3.46714 R4 2.81582 0.00001 0.00012 0.00011 0.00023 2.81605 R5 2.81582 0.00001 0.00012 0.00011 0.00023 2.81605 R6 2.85821 0.00004 0.00079 -0.00028 0.00051 2.85871 A1 1.84783 -0.00011 0.00177 -0.00298 -0.00124 1.84659 A2 1.88426 0.00001 0.00262 -0.00070 0.00190 1.88616 A3 1.88426 0.00001 0.00262 -0.00070 0.00190 1.88616 A4 1.97610 -0.00419 0.00036 0.00086 0.00121 1.97731 A5 1.97610 -0.00419 0.00036 0.00086 0.00121 1.97731 A6 1.35822 0.10612 -0.00000 0.00000 0.00000 1.35822 A7 1.96606 -0.00844 0.00091 -0.00388 -0.00297 1.96309 A8 2.05363 -0.02744 -0.00088 0.00184 0.00096 2.05459 A9 2.05363 -0.02744 -0.00088 0.00184 0.00096 2.05459 D1 1.01377 0.00990 -0.00327 0.00406 0.00078 1.01455 D2 -3.00408 -0.00977 -0.00134 0.00011 -0.00123 -3.00531 D3 -0.99516 0.00006 -0.00230 0.00209 -0.00023 -0.99538 D4 3.00408 0.00977 0.00134 -0.00011 0.00123 3.00531 D5 -1.01377 -0.00990 0.00327 -0.00406 -0.00078 -1.01455 D6 0.99516 -0.00006 0.00230 -0.00209 0.00023 0.99538 Item Value Threshold Converged? Maximum Force 0.001160 0.000450 NO RMS Force 0.000276 0.000300 YES Maximum Displacement 0.003574 0.001800 NO RMS Displacement 0.001441 0.001200 NO Predicted change in Energy=-4.543577D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.037653 0.809248 -0.000000 2 1 0 -1.654219 0.790819 -0.815635 3 1 0 -1.654219 0.790819 0.815635 4 14 0 -0.047647 -0.735463 0.000000 5 1 0 0.760245 -0.917555 -1.238878 6 1 0 0.760245 -0.917555 1.238878 7 1 0 -1.464837 -1.264647 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022621 0.000000 3 H 1.022621 1.631270 0.000000 4 Si 1.834733 2.361329 2.361329 0.000000 5 H 2.783721 2.987861 3.601278 1.490190 0.000000 6 H 2.783721 3.601278 2.987861 1.490190 2.477756 7 H 2.117434 2.219475 2.219475 1.512767 2.570269 6 7 6 H 0.000000 7 H 2.570269 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052806 1.208285 0.000000 2 1 0 0.476242 1.525463 0.815635 3 1 0 0.476242 1.525463 -0.815635 4 14 0 -0.052806 -0.626448 -0.000000 5 1 0 -0.634736 -1.215687 1.238878 6 1 0 -0.634736 -1.215687 -1.238878 7 1 0 1.425908 -0.307279 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.0118852 11.8646119 11.5360173 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.1105490497 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.1002159885 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.53D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000025 Ang= -0.00 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=7.78D-05 Max=1.11D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=4.72D-05 Max=3.20D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.64D-05 Max=1.16D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.46D-06 Max=2.90D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.05D-06 Max=9.86D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.99D-07 Max=1.43D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=6.13D-08 Max=5.59D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.02D-08 Max=1.28D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.68D-09 Max=4.52D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=5.31D-10 Max=3.50D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 2.06D-04 DF= -1.71D-13 DXR= 2.06D-04 DFR= 6.73D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.99D-08 Max=1.15D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.01D-08 Max=4.24D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=8.19D-09 Max=6.77D-08 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.81D-09 Max=2.61D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.84D-10 Max=5.03D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.07D-10 Max=1.05D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.26D-11 Max=2.49D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=9.96D-12 Max=6.92D-11 NDo= 1 Linear equations converged to 1.121D-11 1.121D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.050433224 a.u. after 3 cycles Convg = 0.1229D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.030578526 0.019474335 0.000000000 2 1 0.000005258 -0.000025373 0.000034816 3 1 0.000005258 -0.000025373 -0.000034816 4 14 -0.046011823 0.021703454 -0.000000000 5 1 0.000060974 0.000005808 0.000051513 6 1 0.000060974 0.000005808 -0.000051513 7 1 0.015300834 -0.041138658 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046011823 RMS 0.016660397 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.106475132 RMS 0.025226031 Search for a local minimum. Step number 3 out of a maximum of 31 on scan point 2 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 DE= -5.21D-06 DEPred=-4.54D-06 R= 1.15D+00 TightC=F SS= 1.41D+00 RLast= 8.15D-03 DXNew= 3.1674D-01 2.4446D-02 Trust test= 1.15D+00 RLast= 8.15D-03 DXMaxT set to 1.88D-01 ITU= 1 1 0 Eigenvalues --- 0.01983 0.02387 0.05506 0.09984 0.11121 Eigenvalues --- 0.11927 0.16000 0.16000 0.16483 0.16944 Eigenvalues --- 0.17310 0.20820 0.44404 0.468491000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 En-DIIS/RFO-DIIS/Sim-DIIS IScMMF= -3 using points: 3 2 RFO step: Lambda=-1.39065610D-05. DidBck=F Rises=F RFO-DIIS coefs: 1.20248 -0.20248 Iteration 1 RMS(Cart)= 0.00061977 RMS(Int)= 0.00000900 Iteration 2 RMS(Cart)= 0.00000027 RMS(Int)= 0.00000899 Iteration 1 RMS(Cart)= 0.00000725 RMS(Int)= 0.00000136 Iteration 2 RMS(Cart)= 0.00000110 RMS(Int)= 0.00000144 Iteration 3 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000147 ClnCor: largest displacement from symmetrization is 8.01D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93247 -0.00003 -0.00002 0.00002 -0.00000 1.93247 R2 1.93247 -0.00003 -0.00002 0.00002 -0.00000 1.93247 R3 3.46714 -0.00015 -0.00127 0.00046 -0.00080 3.46634 R4 2.81605 -0.00001 0.00005 -0.00005 -0.00000 2.81605 R5 2.81605 -0.00001 0.00005 -0.00005 -0.00000 2.81605 R6 2.85871 0.00006 0.00010 0.00019 0.00030 2.85901 A1 1.84659 -0.00000 -0.00025 -0.00028 -0.00053 1.84606 A2 1.88616 -0.00003 0.00038 -0.00068 -0.00029 1.88586 A3 1.88616 -0.00003 0.00038 -0.00068 -0.00029 1.88586 A4 1.97731 -0.00433 0.00025 0.00008 0.00033 1.97764 A5 1.97731 -0.00433 0.00025 0.00008 0.00033 1.97764 A6 1.35822 0.10648 0.00000 0.00000 0.00000 1.35822 A7 1.96309 -0.00830 -0.00060 -0.00085 -0.00145 1.96164 A8 2.05459 -0.02766 0.00020 0.00046 0.00068 2.05527 A9 2.05459 -0.02766 0.00020 0.00046 0.00068 2.05527 D1 1.01455 0.00989 0.00016 0.00103 0.00118 1.01573 D2 -3.00531 -0.00986 -0.00025 -0.00003 -0.00027 -3.00558 D3 -0.99538 0.00002 -0.00005 0.00050 0.00046 -0.99493 D4 3.00531 0.00986 0.00025 0.00003 0.00027 3.00558 D5 -1.01455 -0.00989 -0.00016 -0.00103 -0.00118 -1.01573 D6 0.99538 -0.00002 0.00005 -0.00050 -0.00046 0.99493 Item Value Threshold Converged? Maximum Force 0.000153 0.000450 YES RMS Force 0.000052 0.000300 YES Maximum Displacement 0.001287 0.001800 YES RMS Displacement 0.000623 0.001200 YES Predicted change in Energy=-2.958346D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0226 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0226 -DE/DX = 0.0 ! ! R3 R(1,4) 1.8347 -DE/DX = -0.0002 ! ! R4 R(4,5) 1.4902 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4902 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5128 -DE/DX = 0.0001 ! ! A1 A(2,1,3) 105.8016 -DE/DX = 0.0 ! ! A2 A(2,1,4) 108.069 -DE/DX = 0.0 ! ! A3 A(3,1,4) 108.069 -DE/DX = 0.0 ! ! A4 A(1,4,5) 113.2917 -DE/DX = -0.0043 ! ! A5 A(1,4,6) 113.2917 -DE/DX = -0.0043 ! ! A6 A(1,4,7) 77.82 -DE/DX = 0.1065 ! ! A7 A(5,4,6) 112.4765 -DE/DX = -0.0083 ! ! A8 A(5,4,7) 117.7195 -DE/DX = -0.0277 ! ! A9 A(6,4,7) 117.7195 -DE/DX = -0.0277 ! ! D1 D(2,1,4,5) 58.1293 -DE/DX = 0.0099 ! ! D2 D(2,1,4,6) -172.1918 -DE/DX = -0.0099 ! ! D3 D(2,1,4,7) -57.0312 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 172.1918 -DE/DX = 0.0099 ! ! D5 D(3,1,4,6) -58.1293 -DE/DX = -0.0099 ! ! D6 D(3,1,4,7) 57.0312 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01579180 RMS(Int)= 0.00301442 Iteration 2 RMS(Cart)= 0.00019034 RMS(Int)= 0.00300778 Iteration 3 RMS(Cart)= 0.00000157 RMS(Int)= 0.00300778 Iteration 4 RMS(Cart)= 0.00000002 RMS(Int)= 0.00300778 Iteration 1 RMS(Cart)= 0.00246865 RMS(Int)= 0.00048177 Iteration 2 RMS(Cart)= 0.00039480 RMS(Int)= 0.00051335 Iteration 3 RMS(Cart)= 0.00006360 RMS(Int)= 0.00052385 Iteration 4 RMS(Cart)= 0.00001026 RMS(Int)= 0.00052567 Iteration 5 RMS(Cart)= 0.00000165 RMS(Int)= 0.00052597 Iteration 6 RMS(Cart)= 0.00000027 RMS(Int)= 0.00052602 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.034686 0.817620 -0.000000 2 1 0 -1.651562 0.802659 -0.815472 3 1 0 -1.651562 0.802659 0.815472 4 14 0 -0.054786 -0.733018 0.000000 5 1 0 0.755486 -0.915893 -1.237206 6 1 0 0.755486 -0.915893 1.237206 7 1 0 -1.456462 -1.302470 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022621 0.000000 3 H 1.022621 1.630943 0.000000 4 Si 1.834308 2.360718 2.360718 0.000000 5 H 2.782169 2.987500 3.600109 1.490189 0.000000 6 H 2.782169 3.600109 2.987500 1.490189 2.474412 7 H 2.161637 2.265971 2.265971 1.512935 2.563754 6 7 6 H 0.000000 7 H 2.563754 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052827 1.209882 -0.000000 2 1 0 0.476643 1.526774 0.815472 3 1 0 0.476643 1.526774 -0.815472 4 14 0 -0.052827 -0.624425 0.000000 5 1 0 -0.640101 -1.211872 1.237206 6 1 0 -0.640101 -1.211872 -1.237206 7 1 0 1.436290 -0.357027 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.6249415 11.8504095 11.5391394 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.0756487943 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.0653334070 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.50D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 0.000000 -0.000000 0.001636 Ang= 0.19 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 3 and 4. LinEq1: Iter= 0 NonCon= 1 RMS=1.59D-04 Max=1.61D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.04D-05 Max=8.55D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.62D-05 Max=5.27D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.94D-06 Max=6.72D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.59D-06 Max=1.60D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.66D-07 Max=4.18D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.51D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.00D-08 Max=1.66D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.59D-09 Max=2.15D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -6.43D-04 DF= -2.22D-12 DXR= 6.43D-04 DFR= 4.14D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.88D-07 Max=3.15D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.16D-07 Max=1.21D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.03D-08 Max=3.91D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.06D-08 Max=9.05D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.00D-09 Max=1.82D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=3.78D-10 Max=2.93D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.31D-10 Max=8.24D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.86D-11 Max=2.78D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=6.00D-12 Max=5.29D-11 NDo= 1 Linear equations converged to 1.941D-11 1.941D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.054684065 a.u. after 4 cycles Convg = 0.1376D-10 23 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1453. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.030346815 0.015631078 0.000000000 2 1 -0.000066209 0.000050745 -0.000122147 3 1 -0.000066209 0.000050745 0.000122147 4 14 -0.045754730 0.022654496 -0.000000000 5 1 0.000052331 -0.000061103 -0.000018239 6 1 0.000052331 -0.000061103 0.000018239 7 1 0.015435672 -0.038264857 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.045754730 RMS 0.016145909 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.098917478 RMS 0.023578658 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 3 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01982 0.02387 0.05507 0.09995 0.10844 Eigenvalues --- 0.11926 0.16000 0.16000 0.16449 0.16944 Eigenvalues --- 0.17297 0.20832 0.44404 0.468511000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-5.72183880D-05 EMin= 1.98222509D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00427708 RMS(Int)= 0.00004616 Iteration 2 RMS(Cart)= 0.00003625 RMS(Int)= 0.00003232 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003232 Iteration 1 RMS(Cart)= 0.00000027 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 6.09D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93247 0.00014 0.00000 -0.00054 -0.00054 1.93194 R2 1.93247 0.00014 0.00000 -0.00054 -0.00054 1.93194 R3 3.46634 -0.00284 0.00000 -0.01901 -0.01901 3.44733 R4 2.81605 0.00005 0.00000 0.00057 0.00057 2.81662 R5 2.81605 0.00005 0.00000 0.00057 0.00057 2.81662 R6 2.85903 0.00010 0.00000 0.00269 0.00269 2.86172 A1 1.84606 -0.00001 0.00000 0.00345 0.00334 1.84940 A2 1.88587 0.00007 0.00000 0.00925 0.00920 1.89507 A3 1.88587 0.00007 0.00000 0.00925 0.00920 1.89507 A4 1.97600 -0.00472 0.00000 0.00159 0.00159 1.97759 A5 1.97600 -0.00472 0.00000 0.00159 0.00159 1.97759 A6 1.39312 0.09892 0.00000 0.00000 -0.00000 1.39312 A7 1.95906 -0.00750 0.00000 -0.00295 -0.00295 1.95610 A8 2.04605 -0.02660 0.00000 0.00059 0.00059 2.04664 A9 2.04605 -0.02660 0.00000 0.00059 0.00059 2.04664 D1 1.01905 0.00954 0.00000 -0.00600 -0.00603 1.01302 D2 -3.00891 -0.00960 0.00000 -0.00731 -0.00734 -3.01625 D3 -0.99493 -0.00003 0.00000 -0.00666 -0.00669 -1.00161 D4 3.00891 0.00960 0.00000 0.00731 0.00734 3.01625 D5 -1.01905 -0.00954 0.00000 0.00600 0.00603 -1.01302 D6 0.99493 0.00003 0.00000 0.00666 0.00669 1.00161 Item Value Threshold Converged? Maximum Force 0.002841 0.000450 NO RMS Force 0.000640 0.000300 NO Maximum Displacement 0.015774 0.001800 NO RMS Displacement 0.004282 0.001200 NO Predicted change in Energy=-2.869765D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.034267 0.809273 -0.000000 2 1 0 -1.649770 0.804442 -0.816275 3 1 0 -1.649770 0.804442 0.816275 4 14 0 -0.056748 -0.730966 0.000000 5 1 0 0.755552 -0.913925 -1.236230 6 1 0 0.755552 -0.913925 1.236230 7 1 0 -1.458632 -1.303676 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022337 0.000000 3 H 1.022337 1.632551 0.000000 4 Si 1.824248 2.358284 2.358284 0.000000 5 H 2.775090 2.985753 3.598769 1.490493 0.000000 6 H 2.775090 3.598769 2.985753 1.490493 2.472459 7 H 2.155142 2.268700 2.268700 1.514356 2.565693 6 7 6 H 0.000000 7 H 2.565693 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052287 1.202791 0.000000 2 1 0 0.469981 1.528529 0.816275 3 1 0 0.469981 1.528529 -0.816275 4 14 0 -0.052287 -0.621456 -0.000000 5 1 0 -0.640085 -1.211200 1.236230 6 1 0 -0.640085 -1.211200 -1.236230 7 1 0 1.438230 -0.353807 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.7162243 11.9476002 11.6295994 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.2446688196 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.2343464510 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.50D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000506 Ang= -0.06 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.95D-04 Max=3.83D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.52D-04 Max=1.13D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.15D-05 Max=4.35D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.27D-05 Max=1.10D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.58D-06 Max=2.84D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.73D-07 Max=6.78D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.38D-07 Max=2.71D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.94D-08 Max=5.95D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.79D-08 Max=1.49D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=2.07D-09 Max=1.29D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 3.70D-04 DF= -5.57D-12 DXR= 3.69D-04 DFR= 1.35D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=8.21D-07 Max=1.01D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.43D-07 Max=3.36D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.01D-07 Max=1.25D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.61D-08 Max=1.52D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.57D-09 Max=3.42D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.01D-10 Max=5.73D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.98D-10 Max=1.67D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=8.41D-11 Max=6.48D-10 NDo= 1 Linear equations converged to 1.694D-10 1.694D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.054712924 a.u. after 3 cycles Convg = 0.1546D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.029176007 0.018542706 0.000000000 2 1 0.000003204 0.000036558 -0.000054468 3 1 0.000003204 0.000036558 0.000054468 4 14 -0.044941465 0.020134847 -0.000000000 5 1 -0.000033461 -0.000038656 -0.000030912 6 1 -0.000033461 -0.000038656 0.000030912 7 1 0.015825970 -0.038673358 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.044941465 RMS 0.015985595 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.100109698 RMS 0.023872200 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 3 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.89D-05 DEPred=-2.87D-05 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 2.89D-02 DXNew= 3.1674D-01 8.6683D-02 Trust test= 1.01D+00 RLast= 2.89D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01897 0.02387 0.05515 0.09990 0.10798 Eigenvalues --- 0.12002 0.16000 0.16000 0.16537 0.16944 Eigenvalues --- 0.17337 0.21583 0.44404 0.468081000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.70830956D-07 EMin= 1.89693415D-02 Quartic linear search produced a step of 0.00084. Iteration 1 RMS(Cart)= 0.00064230 RMS(Int)= 0.00000062 Iteration 2 RMS(Cart)= 0.00000038 RMS(Int)= 0.00000049 Iteration 1 RMS(Cart)= 0.00000006 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 2.13D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93194 0.00004 -0.00000 -0.00001 -0.00001 1.93193 R2 1.93194 0.00004 -0.00000 -0.00001 -0.00001 1.93193 R3 3.44733 0.00008 -0.00002 -0.00002 -0.00003 3.44730 R4 2.81662 0.00001 0.00000 0.00004 0.00004 2.81667 R5 2.81662 0.00001 0.00000 0.00004 0.00004 2.81667 R6 2.86172 -0.00002 0.00000 0.00002 0.00002 2.86174 A1 1.84940 0.00001 0.00000 0.00094 0.00094 1.85035 A2 1.89507 0.00004 0.00001 0.00092 0.00092 1.89599 A3 1.89507 0.00004 0.00001 0.00092 0.00092 1.89599 A4 1.97759 -0.00489 0.00000 0.00033 0.00033 1.97793 A5 1.97759 -0.00489 0.00000 0.00033 0.00033 1.97793 A6 1.39312 0.10011 -0.00000 0.00000 0.00000 1.39312 A7 1.95610 -0.00746 -0.00000 0.00053 0.00052 1.95663 A8 2.04664 -0.02706 0.00000 -0.00062 -0.00062 2.04602 A9 2.04664 -0.02706 0.00000 -0.00062 -0.00062 2.04602 D1 1.01302 0.00969 -0.00001 -0.00171 -0.00172 1.01130 D2 -3.01625 -0.00974 -0.00001 -0.00036 -0.00037 -3.01662 D3 -1.00161 -0.00003 -0.00001 -0.00104 -0.00104 -1.00266 D4 3.01625 0.00974 0.00001 0.00036 0.00037 3.01662 D5 -1.01302 -0.00969 0.00001 0.00171 0.00172 -1.01130 D6 1.00161 0.00003 0.00001 0.00104 0.00104 1.00266 Item Value Threshold Converged? Maximum Force 0.000081 0.000450 YES RMS Force 0.000043 0.000300 YES Maximum Displacement 0.001199 0.001800 YES RMS Displacement 0.000642 0.001200 YES Predicted change in Energy=-2.525871D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0223 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0223 -DE/DX = 0.0 ! ! R3 R(1,4) 1.8242 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4905 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4905 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5144 -DE/DX = 0.0 ! ! A1 A(2,1,3) 105.9629 -DE/DX = 0.0 ! ! A2 A(2,1,4) 108.5795 -DE/DX = 0.0 ! ! A3 A(3,1,4) 108.5795 -DE/DX = 0.0 ! ! A4 A(1,4,5) 113.3078 -DE/DX = -0.0049 ! ! A5 A(1,4,6) 113.3078 -DE/DX = -0.0049 ! ! A6 A(1,4,7) 79.82 -DE/DX = 0.1001 ! ! A7 A(5,4,6) 112.0764 -DE/DX = -0.0075 ! ! A8 A(5,4,7) 117.2638 -DE/DX = -0.0271 ! ! A9 A(6,4,7) 117.2638 -DE/DX = -0.0271 ! ! D1 D(2,1,4,5) 58.0418 -DE/DX = 0.0097 ! ! D2 D(2,1,4,6) -172.8182 -DE/DX = -0.0097 ! ! D3 D(2,1,4,7) -57.3882 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 172.8182 -DE/DX = 0.0097 ! ! D5 D(3,1,4,6) -58.0418 -DE/DX = -0.0097 ! ! D6 D(3,1,4,7) 57.3882 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01553722 RMS(Int)= 0.00311469 Iteration 2 RMS(Cart)= 0.00018421 RMS(Int)= 0.00310872 Iteration 3 RMS(Cart)= 0.00000148 RMS(Int)= 0.00310872 Iteration 4 RMS(Cart)= 0.00000002 RMS(Int)= 0.00310872 Iteration 1 RMS(Cart)= 0.00259120 RMS(Int)= 0.00053011 Iteration 2 RMS(Cart)= 0.00044115 RMS(Int)= 0.00056658 Iteration 3 RMS(Cart)= 0.00007563 RMS(Int)= 0.00057951 Iteration 4 RMS(Cart)= 0.00001298 RMS(Int)= 0.00058190 Iteration 5 RMS(Cart)= 0.00000223 RMS(Int)= 0.00058232 Iteration 6 RMS(Cart)= 0.00000038 RMS(Int)= 0.00058239 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.031994 0.817132 -0.000000 2 1 0 -1.647128 0.817186 -0.816562 3 1 0 -1.647128 0.817186 0.816562 4 14 0 -0.063479 -0.728766 0.000000 5 1 0 0.749893 -0.912537 -1.235431 6 1 0 0.749893 -0.912537 1.235431 7 1 0 -1.448141 -1.341999 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022332 0.000000 3 H 1.022332 1.633124 0.000000 4 Si 1.824232 2.358958 2.358958 0.000000 5 H 2.773656 2.985483 3.598378 1.490515 0.000000 6 H 2.773656 3.598378 2.985483 1.490515 2.470861 7 H 2.198869 2.316991 2.316991 1.514378 2.557749 6 7 6 H 0.000000 7 H 2.557749 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.052233 1.204552 -0.000000 2 1 0 0.469018 1.531182 0.816562 3 1 0 0.469018 1.531182 -0.816562 4 14 0 -0.052233 -0.619680 0.000000 5 1 0 -0.643938 -1.207246 1.235431 6 1 0 -0.643938 -1.207246 -1.235431 7 1 0 1.446738 -0.404209 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.3745922 11.9288916 11.6242294 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.2017821405 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.1914802497 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.46D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999999 0.000000 0.000000 0.001506 Ang= 0.17 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. Gradient too large for Newton-Raphson -- use scaled steepest descent instead. Accept linear search using points 3 and 4. LinEq1: Iter= 0 NonCon= 1 RMS=1.43D-04 Max=1.27D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=8.18D-05 Max=8.10D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.93D-05 Max=4.32D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=6.44D-06 Max=5.67D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.31D-06 Max=1.18D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.84D-07 Max=3.28D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.31D-07 Max=1.46D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.55D-08 Max=1.24D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.85D-09 Max=1.26D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -5.37D-04 DF= -1.36D-12 DXR= 5.37D-04 DFR= 2.94D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.48D-07 Max=2.54D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=8.63D-08 Max=8.83D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.88D-08 Max=2.72D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.74D-09 Max=6.60D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.49D-09 Max=1.21D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.94D-10 Max=2.31D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.05D-10 Max=6.88D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.08D-11 Max=2.13D-10 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=4.17D-12 Max=3.81D-11 NDo= 1 Linear equations converged to 1.585D-11 1.585D-10 after 8 iterations. SCF Done: E(RB97D3) = -347.058749699 a.u. after 4 cycles Convg = 0.9404D-11 23 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.028948364 0.014735194 0.000000000 2 1 -0.000082354 0.000100545 -0.000131140 3 1 -0.000082354 0.000100545 0.000131140 4 14 -0.044658719 0.020794058 -0.000000000 5 1 0.000040699 -0.000018810 -0.000047006 6 1 0.000040699 -0.000018810 0.000047006 7 1 0.015793665 -0.035692722 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.044658719 RMS 0.015438688 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.092517012 RMS 0.022190064 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 4 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01896 0.02387 0.05514 0.09983 0.10524 Eigenvalues --- 0.12009 0.16000 0.16000 0.16511 0.16944 Eigenvalues --- 0.17325 0.21598 0.44404 0.468101000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-5.30437348D-05 EMin= 1.89645664D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00482993 RMS(Int)= 0.00007014 Iteration 2 RMS(Cart)= 0.00005366 RMS(Int)= 0.00004955 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00004955 Iteration 1 RMS(Cart)= 0.00000014 RMS(Int)= 0.00000003 ClnCor: largest displacement from symmetrization is 3.62D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93193 0.00015 0.00000 -0.00061 -0.00061 1.93131 R2 1.93193 0.00015 0.00000 -0.00061 -0.00061 1.93131 R3 3.44730 -0.00262 0.00000 -0.01814 -0.01814 3.42916 R4 2.81667 0.00006 0.00000 0.00068 0.00068 2.81735 R5 2.81667 0.00006 0.00000 0.00068 0.00068 2.81735 R6 2.86176 0.00001 0.00000 0.00191 0.00191 2.86367 A1 1.85034 -0.00005 0.00000 0.00459 0.00443 1.85477 A2 1.89599 0.00014 0.00000 0.01116 0.01108 1.90708 A3 1.89599 0.00014 0.00000 0.01116 0.01108 1.90708 A4 1.97600 -0.00528 0.00000 0.00088 0.00088 1.97688 A5 1.97600 -0.00528 0.00000 0.00088 0.00088 1.97688 A6 1.42803 0.09252 0.00000 0.00000 0.00000 1.42803 A7 1.95414 -0.00666 0.00000 -0.00170 -0.00170 1.95244 A8 2.03648 -0.02568 0.00000 0.00034 0.00034 2.03681 A9 2.03648 -0.02568 0.00000 0.00034 0.00034 2.03681 D1 1.01480 0.00938 0.00000 -0.00820 -0.00824 1.00656 D2 -3.02011 -0.00947 0.00000 -0.00901 -0.00906 -3.02917 D3 -1.00266 -0.00005 0.00000 -0.00861 -0.00865 -1.01131 D4 3.02011 0.00947 0.00000 0.00901 0.00906 3.02917 D5 -1.01480 -0.00938 0.00000 0.00820 0.00824 -1.00656 D6 1.00266 0.00005 0.00000 0.00861 0.00865 1.01131 Item Value Threshold Converged? Maximum Force 0.002624 0.000450 NO RMS Force 0.000592 0.000300 NO Maximum Displacement 0.017518 0.001800 NO RMS Displacement 0.004831 0.001200 NO Predicted change in Energy=-2.657383D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.032285 0.807862 -0.000000 2 1 0 -1.645288 0.820335 -0.817662 3 1 0 -1.645288 0.820335 0.817662 4 14 0 -0.065216 -0.727606 0.000000 5 1 0 0.749667 -0.910361 -1.235021 6 1 0 0.749667 -0.910361 1.235021 7 1 0 -1.449342 -1.344540 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022007 0.000000 3 H 1.022007 1.635323 0.000000 4 Si 1.814631 2.358245 2.358245 0.000000 5 H 2.766391 2.984176 3.597864 1.490876 0.000000 6 H 2.766391 3.597864 2.984176 1.490876 2.470043 7 H 2.192435 2.322423 2.322423 1.515391 2.559185 6 7 6 H 0.000000 7 H 2.559185 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.051532 1.197556 -0.000000 2 1 0 0.460519 1.534797 0.817662 3 1 0 0.460519 1.534797 -0.817662 4 14 0 -0.051532 -0.617075 -0.000000 5 1 0 -0.643658 -1.205989 1.235021 6 1 0 -0.643658 -1.205989 -1.235021 7 1 0 1.448442 -0.401460 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.4676262 12.0212945 11.7081144 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.3612145342 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.3509074900 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.46D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 0.000000 0.000000 -0.000637 Ang= -0.07 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.17D-04 Max=3.87D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.49D-04 Max=1.18D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.55D-05 Max=4.04D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.39D-05 Max=1.32D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.76D-06 Max=2.91D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.77D-07 Max=6.24D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.36D-07 Max=2.79D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.88D-08 Max=6.22D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.67D-08 Max=1.22D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.98D-09 Max=1.39D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 2.74D-04 DF= -3.92D-12 DXR= 2.74D-04 DFR= 7.54D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=8.55D-07 Max=7.86D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.86D-07 Max=4.11D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.32D-07 Max=1.37D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.73D-08 Max=2.03D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.28D-09 Max=1.00D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.72D-09 Max=1.63D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.35D-10 Max=3.49D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.22D-10 Max=7.86D-10 NDo= 1 Linear equations converged to 1.962D-10 1.962D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.058775592 a.u. after 3 cycles Convg = 0.2043D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.027821867 0.017652524 0.000000000 2 1 -0.000013333 0.000031287 -0.000040045 3 1 -0.000013333 0.000031287 0.000040045 4 14 -0.043860168 0.018414096 -0.000000000 5 1 -0.000020448 -0.000018021 -0.000013034 6 1 -0.000020448 -0.000018021 0.000013034 7 1 0.016105863 -0.036093153 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.043860168 RMS 0.015291739 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.093656783 RMS 0.022465310 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 4 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.59D-05 DEPred=-2.66D-05 R= 9.74D-01 TightC=F SS= 1.41D+00 RLast= 3.25D-02 DXNew= 3.1674D-01 9.7409D-02 Trust test= 9.74D-01 RLast= 3.25D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01830 0.02387 0.05501 0.09980 0.10559 Eigenvalues --- 0.12089 0.16000 0.16000 0.16564 0.16944 Eigenvalues --- 0.17331 0.22872 0.44404 0.467611000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.14796125D-07 EMin= 1.83035485D-02 Quartic linear search produced a step of -0.02834. Iteration 1 RMS(Cart)= 0.00045670 RMS(Int)= 0.00000127 Iteration 2 RMS(Cart)= 0.00000011 RMS(Int)= 0.00000127 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 5.51D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93131 0.00004 0.00002 0.00002 0.00003 1.93135 R2 1.93131 0.00004 0.00002 0.00002 0.00003 1.93135 R3 3.42916 0.00018 0.00051 0.00009 0.00061 3.42976 R4 2.81735 0.00000 -0.00002 0.00001 -0.00001 2.81734 R5 2.81735 0.00000 -0.00002 0.00001 -0.00001 2.81734 R6 2.86367 -0.00002 -0.00005 -0.00004 -0.00009 2.86358 A1 1.85477 -0.00001 -0.00013 0.00057 0.00045 1.85523 A2 1.90708 0.00004 -0.00031 0.00083 0.00051 1.90759 A3 1.90708 0.00004 -0.00031 0.00083 0.00051 1.90759 A4 1.97688 -0.00537 -0.00002 0.00013 0.00010 1.97698 A5 1.97688 -0.00537 -0.00002 0.00013 0.00010 1.97698 A6 1.42803 0.09366 -0.00000 0.00000 0.00000 1.42803 A7 1.95244 -0.00671 0.00005 0.00023 0.00028 1.95272 A8 2.03681 -0.02607 -0.00001 -0.00026 -0.00027 2.03654 A9 2.03681 -0.02607 -0.00001 -0.00026 -0.00027 2.03654 D1 1.00656 0.00953 0.00023 -0.00108 -0.00085 1.00571 D2 -3.02917 -0.00957 0.00026 -0.00053 -0.00027 -3.02944 D3 -1.01131 -0.00002 0.00025 -0.00081 -0.00056 -1.01187 D4 3.02917 0.00957 -0.00026 0.00053 0.00027 3.02944 D5 -1.00656 -0.00953 -0.00023 0.00108 0.00085 -1.00571 D6 1.01131 0.00002 -0.00025 0.00081 0.00056 1.01187 Item Value Threshold Converged? Maximum Force 0.000177 0.000450 YES RMS Force 0.000047 0.000300 YES Maximum Displacement 0.000937 0.001800 YES RMS Displacement 0.000457 0.001200 YES Predicted change in Energy=-1.341782D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.022 -DE/DX = 0.0 ! ! R2 R(1,3) 1.022 -DE/DX = 0.0 ! ! R3 R(1,4) 1.8146 -DE/DX = 0.0002 ! ! R4 R(4,5) 1.4909 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4909 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5154 -DE/DX = 0.0 ! ! A1 A(2,1,3) 106.2707 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.2675 -DE/DX = 0.0 ! ! A3 A(3,1,4) 109.2675 -DE/DX = 0.0 ! ! A4 A(1,4,5) 113.2667 -DE/DX = -0.0054 ! ! A5 A(1,4,6) 113.2667 -DE/DX = -0.0054 ! ! A6 A(1,4,7) 81.82 -DE/DX = 0.0937 ! ! A7 A(5,4,6) 111.8666 -DE/DX = -0.0067 ! ! A8 A(5,4,7) 116.7007 -DE/DX = -0.0261 ! ! A9 A(6,4,7) 116.7007 -DE/DX = -0.0261 ! ! D1 D(2,1,4,5) 57.6716 -DE/DX = 0.0095 ! ! D2 D(2,1,4,6) -173.5588 -DE/DX = -0.0096 ! ! D3 D(2,1,4,7) -57.9436 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 173.5588 -DE/DX = 0.0096 ! ! D5 D(3,1,4,6) -57.6716 -DE/DX = -0.0095 ! ! D6 D(3,1,4,7) 57.9436 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01530249 RMS(Int)= 0.00320011 Iteration 2 RMS(Cart)= 0.00017852 RMS(Int)= 0.00319469 Iteration 3 RMS(Cart)= 0.00000139 RMS(Int)= 0.00319469 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00319469 Iteration 1 RMS(Cart)= 0.00269242 RMS(Int)= 0.00057368 Iteration 2 RMS(Cart)= 0.00048269 RMS(Int)= 0.00061472 Iteration 3 RMS(Cart)= 0.00008710 RMS(Int)= 0.00063007 Iteration 4 RMS(Cart)= 0.00001574 RMS(Int)= 0.00063307 Iteration 5 RMS(Cart)= 0.00000284 RMS(Int)= 0.00063362 Iteration 6 RMS(Cart)= 0.00000051 RMS(Int)= 0.00063372 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.029908 0.815844 -0.000000 2 1 0 -1.642627 0.832884 -0.817815 3 1 0 -1.642627 0.832884 0.817815 4 14 0 -0.072346 -0.725949 0.000000 5 1 0 0.743821 -0.908890 -1.234141 6 1 0 0.743821 -0.908890 1.234141 7 1 0 -1.438220 -1.382219 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022025 0.000000 3 H 1.022025 1.635630 0.000000 4 Si 1.814952 2.358933 2.358933 0.000000 5 H 2.764765 2.983661 3.597142 1.490872 0.000000 6 H 2.764765 3.597142 2.983661 1.490872 2.468282 7 H 2.235666 2.370082 2.370082 1.515356 2.551166 6 7 6 H 0.000000 7 H 2.551166 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.051383 1.199523 -0.000000 2 1 0 0.460128 1.537267 0.817815 3 1 0 0.460128 1.537267 -0.817815 4 14 0 -0.051383 -0.615429 0.000000 5 1 0 -0.648193 -1.201443 1.234141 6 1 0 -0.648193 -1.201443 -1.234141 7 1 0 1.455167 -0.452298 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.1600359 11.9993545 11.6992575 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.3155792834 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.3052938259 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.43D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 0.999999 0.000000 0.000000 0.001619 Ang= 0.19 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=4.41D-04 Max=5.63D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.30D-04 Max=1.10D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.32D-05 Max=5.03D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.44D-05 Max=1.26D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.16D-06 Max=3.69D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.02D-06 Max=8.85D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.38D-07 Max=2.33D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.23D-08 Max=8.67D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.09D-08 Max=9.83D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.77D-09 Max=1.38D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 8.73D-04 DF= -6.31D-11 DXR= 8.72D-04 DFR= 7.61D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.18D-06 Max=3.90D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.63D-06 Max=1.62D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.77D-07 Max=8.91D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.62D-07 Max=2.02D-06 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.17D-08 Max=2.03D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.29D-09 Max=3.17D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.50D-09 Max=1.25D-08 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.04D-10 Max=2.44D-09 NDo= 1 Linear equations converged to 7.780D-10 7.780D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.062585482 a.u. after 3 cycles Convg = 0.1841D-08 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.027439499 0.013856737 0.000000000 2 1 -0.000086301 0.000124940 -0.000128223 3 1 -0.000086301 0.000124940 0.000128223 4 14 -0.043302989 0.018937660 -0.000000000 5 1 0.000051794 0.000018948 -0.000050536 6 1 0.000051794 0.000018948 0.000050536 7 1 0.015932504 -0.033082174 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.043302989 RMS 0.014682488 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.086166119 RMS 0.020780178 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 5 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01830 0.02387 0.05501 0.09956 0.10288 Eigenvalues --- 0.12096 0.16000 0.16000 0.16543 0.16944 Eigenvalues --- 0.17322 0.22886 0.44404 0.467621000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.60337604D-05 EMin= 1.83002841D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00505634 RMS(Int)= 0.00007912 Iteration 2 RMS(Cart)= 0.00006014 RMS(Int)= 0.00005586 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00005586 Iteration 1 RMS(Cart)= 0.00000011 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 1.72D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93135 0.00016 0.00000 -0.00059 -0.00059 1.93076 R2 1.93135 0.00016 0.00000 -0.00059 -0.00059 1.93076 R3 3.42976 -0.00240 0.00000 -0.01634 -0.01634 3.41342 R4 2.81734 0.00007 0.00000 0.00070 0.00070 2.81804 R5 2.81734 0.00007 0.00000 0.00070 0.00070 2.81804 R6 2.86361 -0.00003 0.00000 0.00125 0.00125 2.86486 A1 1.85523 -0.00007 0.00000 0.00468 0.00450 1.85972 A2 1.90759 0.00017 0.00000 0.01165 0.01156 1.91915 A3 1.90759 0.00017 0.00000 0.01165 0.01156 1.91915 A4 1.97476 -0.00570 0.00000 0.00026 0.00026 1.97502 A5 1.97476 -0.00570 0.00000 0.00026 0.00026 1.97502 A6 1.46293 0.08617 0.00000 0.00000 0.00000 1.46293 A7 1.95034 -0.00589 0.00000 -0.00130 -0.00130 1.94904 A8 2.02673 -0.02451 0.00000 0.00060 0.00060 2.02733 A9 2.02673 -0.02451 0.00000 0.00060 0.00060 2.02733 D1 1.00936 0.00911 0.00000 -0.00865 -0.00870 1.00066 D2 -3.03309 -0.00922 0.00000 -0.01001 -0.01006 -3.04315 D3 -1.01187 -0.00006 0.00000 -0.00933 -0.00938 -1.02124 D4 3.03309 0.00922 0.00000 0.01001 0.01006 3.04315 D5 -1.00936 -0.00911 0.00000 0.00865 0.00870 -1.00066 D6 1.01187 0.00006 0.00000 0.00933 0.00938 1.02124 Item Value Threshold Converged? Maximum Force 0.002403 0.000450 NO RMS Force 0.000544 0.000300 NO Maximum Displacement 0.017597 0.001800 NO RMS Displacement 0.005054 0.001200 NO Predicted change in Energy=-2.305803D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.030657 0.806532 -0.000000 2 1 0 -1.640838 0.836727 -0.818940 3 1 0 -1.640838 0.836727 0.818940 4 14 0 -0.074032 -0.725658 0.000000 5 1 0 0.743615 -0.906610 -1.233903 6 1 0 0.743615 -0.906610 1.233903 7 1 0 -1.438948 -1.385444 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021712 0.000000 3 H 1.021712 1.637881 0.000000 4 Si 1.806305 2.359363 2.359363 0.000000 5 H 2.757792 2.982790 3.597083 1.491243 0.000000 6 H 2.757792 3.597083 2.982790 1.491243 2.467806 7 H 2.229678 2.376861 2.376861 1.516019 2.552524 6 7 6 H 0.000000 7 H 2.552524 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.050574 1.193057 -0.000000 2 1 0 0.451018 1.541824 0.818940 3 1 0 0.451018 1.541824 -0.818940 4 14 0 -0.050574 -0.613248 0.000000 5 1 0 -0.648307 -1.199768 1.233903 6 1 0 -0.648307 -1.199768 -1.233903 7 1 0 1.456635 -0.450045 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.2480808 12.0820989 11.7736432 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.4582678013 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.4479787782 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.42D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 -0.000000 Rot= 1.000000 0.000000 0.000000 -0.000652 Ang= -0.07 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.11D-04 Max=3.64D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.36D-04 Max=1.13D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.39D-05 Max=3.83D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.38D-05 Max=1.38D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.72D-06 Max=2.81D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.44D-07 Max=5.74D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.15D-07 Max=2.55D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.50D-08 Max=6.12D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.52D-08 Max=1.27D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.77D-09 Max=1.33D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 2.16D-04 DF= -2.44D-12 DXR= 2.16D-04 DFR= 4.59D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=7.78D-07 Max=7.28D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.70D-07 Max=4.23D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.35D-07 Max=1.23D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.29D-08 Max=2.29D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.83D-09 Max=1.04D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.75D-09 Max=1.65D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.26D-10 Max=3.50D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.14D-10 Max=6.68D-10 NDo= 1 Linear equations converged to 1.894D-10 1.894D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.062608162 a.u. after 3 cycles Convg = 0.1938D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.026356556 0.016575969 0.000000000 2 1 -0.000004093 0.000027830 -0.000036534 3 1 -0.000004093 0.000027830 0.000036534 4 14 -0.042501067 0.016851429 -0.000000000 5 1 -0.000011827 -0.000014000 -0.000005231 6 1 -0.000011827 -0.000014000 0.000005231 7 1 0.016176351 -0.033455058 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.042501067 RMS 0.014541668 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.087187571 RMS 0.021022821 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 5 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.27D-05 DEPred=-2.31D-05 R= 9.84D-01 TightC=F SS= 1.41D+00 RLast= 3.30D-02 DXNew= 3.1674D-01 9.9046D-02 Trust test= 9.84D-01 RLast= 3.30D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01757 0.02387 0.05496 0.09955 0.10294 Eigenvalues --- 0.12206 0.16000 0.16000 0.16567 0.16944 Eigenvalues --- 0.17321 0.24171 0.44404 0.467171000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.57315272D-07 EMin= 1.75694082D-02 Quartic linear search produced a step of -0.01983. Iteration 1 RMS(Cart)= 0.00039961 RMS(Int)= 0.00000097 Iteration 2 RMS(Cart)= 0.00000011 RMS(Int)= 0.00000097 Iteration 1 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 7.78D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93076 0.00003 0.00001 0.00001 0.00002 1.93078 R2 1.93076 0.00003 0.00001 0.00001 0.00002 1.93078 R3 3.41342 0.00015 0.00032 0.00012 0.00045 3.41387 R4 2.81804 -0.00000 -0.00001 0.00001 -0.00001 2.81803 R5 2.81804 -0.00000 -0.00001 0.00001 -0.00001 2.81803 R6 2.86486 -0.00000 -0.00002 -0.00001 -0.00004 2.86482 A1 1.85972 -0.00000 -0.00009 0.00054 0.00046 1.86018 A2 1.91915 0.00003 -0.00023 0.00073 0.00050 1.91966 A3 1.91915 0.00003 -0.00023 0.00073 0.00050 1.91966 A4 1.97502 -0.00573 -0.00001 0.00009 0.00009 1.97511 A5 1.97502 -0.00573 -0.00001 0.00009 0.00009 1.97511 A6 1.46293 0.08719 -0.00000 0.00000 0.00000 1.46293 A7 1.94904 -0.00597 0.00003 0.00007 0.00009 1.94913 A8 2.02733 -0.02487 -0.00001 -0.00012 -0.00014 2.02719 A9 2.02733 -0.02487 -0.00001 -0.00012 -0.00014 2.02719 D1 1.00066 0.00922 0.00017 -0.00089 -0.00072 0.99994 D2 -3.04315 -0.00926 0.00020 -0.00064 -0.00044 -3.04359 D3 -1.02124 -0.00002 0.00019 -0.00077 -0.00058 -1.02182 D4 3.04315 0.00926 -0.00020 0.00064 0.00044 3.04359 D5 -1.00066 -0.00922 -0.00017 0.00089 0.00072 -0.99994 D6 1.02124 0.00002 -0.00019 0.00077 0.00058 1.02182 Item Value Threshold Converged? Maximum Force 0.000153 0.000450 YES RMS Force 0.000039 0.000300 YES Maximum Displacement 0.000877 0.001800 YES RMS Displacement 0.000400 0.001200 YES Predicted change in Energy=-9.107487D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0217 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0217 -DE/DX = 0.0 ! ! R3 R(1,4) 1.8063 -DE/DX = 0.0002 ! ! R4 R(4,5) 1.4912 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4912 -DE/DX = 0.0 ! ! R6 R(4,7) 1.516 -DE/DX = 0.0 ! ! A1 A(2,1,3) 106.5543 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.9594 -DE/DX = 0.0 ! ! A3 A(3,1,4) 109.9594 -DE/DX = 0.0 ! ! A4 A(1,4,5) 113.1606 -DE/DX = -0.0057 ! ! A5 A(1,4,6) 113.1606 -DE/DX = -0.0057 ! ! A6 A(1,4,7) 83.82 -DE/DX = 0.0872 ! ! A7 A(5,4,6) 111.6717 -DE/DX = -0.006 ! ! A8 A(5,4,7) 116.1575 -DE/DX = -0.0249 ! ! A9 A(6,4,7) 116.1575 -DE/DX = -0.0249 ! ! D1 D(2,1,4,5) 57.3337 -DE/DX = 0.0092 ! ! D2 D(2,1,4,6) -174.3597 -DE/DX = -0.0093 ! ! D3 D(2,1,4,7) -58.513 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 174.3597 -DE/DX = 0.0093 ! ! D5 D(3,1,4,6) -57.3337 -DE/DX = -0.0092 ! ! D6 D(3,1,4,7) 58.513 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01508424 RMS(Int)= 0.00327417 Iteration 2 RMS(Cart)= 0.00017328 RMS(Int)= 0.00326920 Iteration 3 RMS(Cart)= 0.00000130 RMS(Int)= 0.00326920 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00326920 Iteration 1 RMS(Cart)= 0.00277705 RMS(Int)= 0.00061329 Iteration 2 RMS(Cart)= 0.00052011 RMS(Int)= 0.00065860 Iteration 3 RMS(Cart)= 0.00009801 RMS(Int)= 0.00067634 Iteration 4 RMS(Cart)= 0.00001849 RMS(Int)= 0.00067997 Iteration 5 RMS(Cart)= 0.00000349 RMS(Int)= 0.00068067 Iteration 6 RMS(Cart)= 0.00000066 RMS(Int)= 0.00068080 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028297 0.814295 -0.000000 2 1 0 -1.638048 0.849172 -0.819089 3 1 0 -1.638048 0.849172 0.819089 4 14 0 -0.081544 -0.724294 0.000000 5 1 0 0.737512 -0.905058 -1.232991 6 1 0 0.737512 -0.905058 1.232991 7 1 0 -1.427171 -1.422563 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021724 0.000000 3 H 1.021724 1.638179 0.000000 4 Si 1.806543 2.359959 2.359959 0.000000 5 H 2.755816 2.981932 3.596058 1.491239 0.000000 6 H 2.755816 3.596058 2.981932 1.491239 2.465982 7 H 2.272143 2.424078 2.424078 1.516012 2.544392 6 7 6 H 0.000000 7 H 2.544392 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.050322 1.194946 0.000000 2 1 0 0.450710 1.544201 0.819089 3 1 0 0.450710 1.544201 -0.819089 4 14 0 -0.050322 -0.611596 -0.000000 5 1 0 -0.653159 -1.194791 1.232991 6 1 0 -0.653159 -1.194791 -1.232991 7 1 0 1.461658 -0.501094 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.9813686 12.0611436 11.7646538 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.4166924876 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.4064258193 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.40D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999999 -0.000000 -0.000000 0.001676 Ang= 0.19 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=4.11D-04 Max=5.03D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.22D-04 Max=1.08D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.94D-05 Max=4.76D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.31D-05 Max=1.20D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.77D-06 Max=4.15D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.88D-07 Max=7.94D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.31D-07 Max=1.77D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.98D-08 Max=8.13D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=9.80D-09 Max=8.93D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.64D-09 Max=1.40D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 7.69D-04 DF= -4.45D-11 DXR= 7.69D-04 DFR= 5.91D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.47D-06 Max=3.38D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.32D-06 Max=1.27D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.43D-07 Max=6.48D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.27D-07 Max=1.59D-06 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.69D-08 Max=1.49D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.59D-09 Max=2.06D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 0 RMS=3.35D-10 Max=2.51D-09 NDo= 1 Linear equations converged to 6.561D-10 6.561D-09 after 6 iterations. SCF Done: E(RB97D3) = -347.066184821 a.u. after 3 cycles Convg = 0.1392D-08 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.025837724 0.012945641 0.000000000 2 1 -0.000081943 0.000144638 -0.000123954 3 1 -0.000081943 0.000144638 0.000123954 4 14 -0.041712353 0.017133487 -0.000000000 5 1 0.000058808 0.000047764 -0.000055301 6 1 0.000058808 0.000047764 0.000055301 7 1 0.015920899 -0.030463931 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.041712353 RMS 0.013887789 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.079923680 RMS 0.019369222 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 6 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01757 0.02387 0.05497 0.09915 0.10025 Eigenvalues --- 0.12213 0.16000 0.16000 0.16548 0.16944 Eigenvalues --- 0.17313 0.24186 0.44404 0.467191000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.04594434D-05 EMin= 1.75666216D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00527935 RMS(Int)= 0.00008673 Iteration 2 RMS(Cart)= 0.00006571 RMS(Int)= 0.00006129 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00006129 Iteration 1 RMS(Cart)= 0.00000014 RMS(Int)= 0.00000003 ClnCor: largest displacement from symmetrization is 8.62D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93078 0.00015 0.00000 -0.00059 -0.00059 1.93019 R2 1.93078 0.00015 0.00000 -0.00059 -0.00059 1.93019 R3 3.41387 -0.00218 0.00000 -0.01474 -0.01474 3.39913 R4 2.81803 0.00007 0.00000 0.00071 0.00071 2.81875 R5 2.81803 0.00007 0.00000 0.00071 0.00071 2.81875 R6 2.86485 -0.00010 0.00000 0.00059 0.00059 2.86543 A1 1.86018 -0.00008 0.00000 0.00477 0.00457 1.86475 A2 1.91966 0.00019 0.00000 0.01196 0.01186 1.93152 A3 1.91966 0.00019 0.00000 0.01196 0.01186 1.93152 A4 1.97260 -0.00601 0.00000 -0.00018 -0.00018 1.97242 A5 1.97260 -0.00601 0.00000 -0.00018 -0.00018 1.97242 A6 1.49784 0.07992 0.00000 0.00000 0.00000 1.49784 A7 1.94687 -0.00515 0.00000 -0.00112 -0.00112 1.94576 A8 2.01715 -0.02320 0.00000 0.00088 0.00087 2.01803 A9 2.01715 -0.02320 0.00000 0.00088 0.00087 2.01803 D1 1.00372 0.00874 0.00000 -0.00908 -0.00914 0.99458 D2 -3.04737 -0.00887 0.00000 -0.01095 -0.01101 -3.05837 D3 -1.02182 -0.00007 0.00000 -0.01002 -0.01007 -1.03189 D4 3.04737 0.00887 0.00000 0.01095 0.01101 3.05837 D5 -1.00372 -0.00874 0.00000 0.00908 0.00914 -0.99458 D6 1.02182 0.00007 0.00000 0.01002 0.01007 1.03189 Item Value Threshold Converged? Maximum Force 0.002183 0.000450 NO RMS Force 0.000498 0.000300 NO Maximum Displacement 0.017565 0.001800 NO RMS Displacement 0.005274 0.001200 NO Predicted change in Energy=-2.027204D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.029525 0.804999 -0.000000 2 1 0 -1.636274 0.853569 -0.820231 3 1 0 -1.636274 0.853569 0.820231 4 14 0 -0.083231 -0.724706 0.000000 5 1 0 0.737346 -0.902729 -1.232834 6 1 0 0.737346 -0.902729 1.232834 7 1 0 -1.427474 -1.426307 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021412 0.000000 3 H 1.021412 1.640462 0.000000 4 Si 1.798741 2.361286 2.361286 0.000000 5 H 2.749191 2.981426 3.596350 1.491616 0.000000 6 H 2.749191 3.596350 2.981426 1.491616 2.465669 7 H 2.266516 2.431915 2.431915 1.516323 2.545675 6 7 6 H 0.000000 7 H 2.545675 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.049416 1.188971 0.000000 2 1 0 0.441031 1.549479 0.820231 3 1 0 0.441031 1.549479 -0.820231 4 14 0 -0.049416 -0.609770 -0.000000 5 1 0 -0.653604 -1.192862 1.232834 6 1 0 -0.653604 -1.192862 -1.232834 7 1 0 1.462874 -0.499245 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.0691083 12.1352341 11.8305709 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.5448828410 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.5346139918 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.39D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 1.000000 0.000000 -0.000000 -0.000668 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.06D-04 Max=3.47D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.25D-04 Max=1.07D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.25D-05 Max=3.84D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.37D-05 Max=1.43D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.72D-06 Max=2.83D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.30D-07 Max=5.53D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.00D-07 Max=2.46D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.31D-08 Max=6.17D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.44D-08 Max=1.27D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.61D-09 Max=1.28D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.80D-04 DF= -1.82D-12 DXR= 1.80D-04 DFR= 3.35D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=7.26D-07 Max=7.12D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.65D-07 Max=4.34D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.38D-07 Max=1.13D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.67D-08 Max=2.74D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.94D-09 Max=1.01D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.70D-09 Max=1.61D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.00D-10 Max=3.55D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.09D-10 Max=6.83D-10 NDo= 1 Linear equations converged to 1.839D-10 1.839D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.066204874 a.u. after 3 cycles Convg = 0.1858D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.024819766 0.015471228 0.000000000 2 1 0.000002809 0.000027646 -0.000036033 3 1 0.000002809 0.000027646 0.000036033 4 14 -0.040900968 0.015324377 -0.000000000 5 1 -0.000010527 -0.000012110 -0.000005340 6 1 -0.000010527 -0.000012110 0.000005340 7 1 0.016096637 -0.030826676 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.040900968 RMS 0.013753780 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.080839646 RMS 0.019584388 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 6 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.01D-05 DEPred=-2.03D-05 R= 9.89D-01 TightC=F SS= 1.41D+00 RLast= 3.37D-02 DXNew= 3.1674D-01 1.0114D-01 Trust test= 9.89D-01 RLast= 3.37D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01665 0.02387 0.05497 0.09915 0.10024 Eigenvalues --- 0.12342 0.16000 0.16000 0.16564 0.16944 Eigenvalues --- 0.17308 0.25588 0.44404 0.466771000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.73866205D-07 EMin= 1.66509535D-02 Quartic linear search produced a step of -0.00992. Iteration 1 RMS(Cart)= 0.00043121 RMS(Int)= 0.00000043 Iteration 2 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000039 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 8.28D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93019 0.00003 0.00001 -0.00000 0.00000 1.93019 R2 1.93019 0.00003 0.00001 -0.00000 0.00000 1.93019 R3 3.39913 0.00014 0.00015 0.00016 0.00031 3.39943 R4 2.81875 -0.00000 -0.00001 0.00001 -0.00000 2.81875 R5 2.81875 -0.00000 -0.00001 0.00001 -0.00000 2.81875 R6 2.86543 -0.00001 -0.00001 -0.00004 -0.00005 2.86539 A1 1.86475 0.00000 -0.00005 0.00059 0.00055 1.86530 A2 1.93152 0.00003 -0.00012 0.00073 0.00061 1.93213 A3 1.93152 0.00003 -0.00012 0.00073 0.00061 1.93213 A4 1.97242 -0.00599 0.00000 0.00008 0.00008 1.97250 A5 1.97242 -0.00599 0.00000 0.00008 0.00008 1.97250 A6 1.49784 0.08084 -0.00000 0.00000 0.00000 1.49784 A7 1.94576 -0.00526 0.00001 0.00007 0.00008 1.94584 A8 2.01803 -0.02353 -0.00001 -0.00011 -0.00012 2.01791 A9 2.01803 -0.02353 -0.00001 -0.00011 -0.00012 2.01791 D1 0.99458 0.00882 0.00009 -0.00094 -0.00085 0.99373 D2 -3.05837 -0.00886 0.00011 -0.00072 -0.00061 -3.05898 D3 -1.03189 -0.00002 0.00010 -0.00083 -0.00073 -1.03262 D4 3.05837 0.00886 -0.00011 0.00072 0.00061 3.05898 D5 -0.99458 -0.00882 -0.00009 0.00094 0.00085 -0.99373 D6 1.03189 0.00002 -0.00010 0.00083 0.00073 1.03262 Item Value Threshold Converged? Maximum Force 0.000144 0.000450 YES RMS Force 0.000037 0.000300 YES Maximum Displacement 0.000963 0.001800 YES RMS Displacement 0.000431 0.001200 YES Predicted change in Energy=-9.278628D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0214 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0214 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7987 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4916 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4916 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5163 -DE/DX = 0.0 ! ! A1 A(2,1,3) 106.8421 -DE/DX = 0.0 ! ! A2 A(2,1,4) 110.6679 -DE/DX = 0.0 ! ! A3 A(3,1,4) 110.6679 -DE/DX = 0.0 ! ! A4 A(1,4,5) 113.0113 -DE/DX = -0.006 ! ! A5 A(1,4,6) 113.0113 -DE/DX = -0.006 ! ! A6 A(1,4,7) 85.82 -DE/DX = 0.0808 ! ! A7 A(5,4,6) 111.4836 -DE/DX = -0.0053 ! ! A8 A(5,4,7) 115.6245 -DE/DX = -0.0235 ! ! A9 A(6,4,7) 115.6245 -DE/DX = -0.0235 ! ! D1 D(2,1,4,5) 56.9853 -DE/DX = 0.0088 ! ! D2 D(2,1,4,6) -175.2318 -DE/DX = -0.0089 ! ! D3 D(2,1,4,7) -59.1232 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 175.2318 -DE/DX = 0.0089 ! ! D5 D(3,1,4,6) -56.9853 -DE/DX = -0.0088 ! ! D6 D(3,1,4,7) 59.1232 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01487917 RMS(Int)= 0.00333904 Iteration 2 RMS(Cart)= 0.00016842 RMS(Int)= 0.00333446 Iteration 3 RMS(Cart)= 0.00000121 RMS(Int)= 0.00333446 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00333446 Iteration 1 RMS(Cart)= 0.00284793 RMS(Int)= 0.00064941 Iteration 2 RMS(Cart)= 0.00055374 RMS(Int)= 0.00069871 Iteration 3 RMS(Cart)= 0.00010828 RMS(Int)= 0.00071878 Iteration 4 RMS(Cart)= 0.00002120 RMS(Int)= 0.00072305 Iteration 5 RMS(Cart)= 0.00000415 RMS(Int)= 0.00072390 Iteration 6 RMS(Cart)= 0.00000081 RMS(Int)= 0.00072407 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.027238 0.812491 -0.000000 2 1 0 -1.633349 0.865969 -0.820399 3 1 0 -1.633349 0.865969 0.820399 4 14 0 -0.091060 -0.723616 0.000000 5 1 0 0.730926 -0.901121 -1.231970 6 1 0 0.730926 -0.901121 1.231970 7 1 0 -1.414940 -1.462905 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021413 0.000000 3 H 1.021413 1.640797 0.000000 4 Si 1.798904 2.361883 2.361883 0.000000 5 H 2.746881 2.980233 3.595083 1.491616 0.000000 6 H 2.746881 3.595083 2.980233 1.491616 2.463940 7 H 2.308190 2.478792 2.478792 1.516314 2.537340 6 7 6 H 0.000000 7 H 2.537340 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.049063 1.190777 -0.000000 2 1 0 0.440673 1.551872 0.820399 3 1 0 0.440673 1.551872 -0.820399 4 14 0 -0.049063 -0.608127 0.000000 5 1 0 -0.658591 -1.187475 1.231970 6 1 0 -0.658591 -1.187475 -1.231970 7 1 0 1.466153 -0.550448 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.8455128 12.1152116 11.8210054 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.5069440626 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.4966982224 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.37D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 0.999999 -0.000000 -0.000000 0.001713 Ang= 0.20 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.86D-04 Max=4.44D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.15D-04 Max=1.06D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.67D-05 Max=4.42D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.22D-05 Max=1.14D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.55D-06 Max=4.43D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.91D-07 Max=7.17D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.33D-07 Max=1.22D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.69D-08 Max=1.83D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.24D-09 Max=3.60D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.47D-09 Max=1.08D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 6.90D-04 DF= -3.29D-11 DXR= 6.89D-04 DFR= 4.75D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.89D-06 Max=2.88D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.07D-06 Max=9.90D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.46D-07 Max=4.65D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.01D-07 Max=1.26D-06 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.39D-08 Max=1.10D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.74D-09 Max=2.60D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.01D-09 Max=9.15D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.83D-10 Max=1.22D-09 NDo= 1 Linear equations converged to 5.515D-10 5.515D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.069544715 a.u. after 3 cycles Convg = 0.8441D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.024193539 0.012014665 0.000000000 2 1 -0.000079918 0.000158550 -0.000120588 3 1 -0.000079918 0.000158550 0.000120588 4 14 -0.039886906 0.015382170 -0.000000000 5 1 0.000062399 0.000072560 -0.000061809 6 1 0.000062399 0.000072560 0.000061809 7 1 0.015728404 -0.027859056 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.039886906 RMS 0.013058265 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.073767635 RMS 0.017956174 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 7 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01665 0.02387 0.05498 0.09760 0.09859 Eigenvalues --- 0.12349 0.16000 0.16000 0.16547 0.16944 Eigenvalues --- 0.17303 0.25604 0.44404 0.466781000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-3.57449649D-05 EMin= 1.66486040D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00546477 RMS(Int)= 0.00009210 Iteration 2 RMS(Cart)= 0.00006973 RMS(Int)= 0.00006516 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00006516 Iteration 1 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000004 ClnCor: largest displacement from symmetrization is 1.52D-11 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93019 0.00015 0.00000 -0.00058 -0.00058 1.92961 R2 1.93019 0.00015 0.00000 -0.00058 -0.00058 1.92961 R3 3.39944 -0.00198 0.00000 -0.01330 -0.01330 3.38613 R4 2.81875 0.00008 0.00000 0.00073 0.00073 2.81948 R5 2.81875 0.00008 0.00000 0.00073 0.00073 2.81948 R6 2.86542 -0.00015 0.00000 0.00004 0.00004 2.86545 A1 1.86529 -0.00010 0.00000 0.00476 0.00454 1.86984 A2 1.93213 0.00021 0.00000 0.01207 0.01196 1.94409 A3 1.93213 0.00021 0.00000 0.01207 0.01196 1.94409 A4 1.96969 -0.00622 0.00000 -0.00059 -0.00059 1.96910 A5 1.96969 -0.00622 0.00000 -0.00059 -0.00059 1.96910 A6 1.53275 0.07377 0.00000 0.00000 0.00000 1.53275 A7 1.94370 -0.00445 0.00000 -0.00090 -0.00090 1.94280 A8 2.00768 -0.02177 0.00000 0.00111 0.00111 2.00879 A9 2.00768 -0.02177 0.00000 0.00111 0.00111 2.00879 D1 0.99762 0.00830 0.00000 -0.00948 -0.00953 0.98809 D2 -3.06287 -0.00844 0.00000 -0.01172 -0.01178 -3.07464 D3 -1.03262 -0.00007 0.00000 -0.01060 -0.01065 -1.04328 D4 3.06287 0.00844 0.00000 0.01172 0.01178 3.07464 D5 -0.99762 -0.00830 0.00000 0.00948 0.00953 -0.98809 D6 1.03262 0.00007 0.00000 0.01060 0.01065 1.04328 Item Value Threshold Converged? Maximum Force 0.001977 0.000450 NO RMS Force 0.000457 0.000300 NO Maximum Displacement 0.017421 0.001800 NO RMS Displacement 0.005457 0.001200 NO Predicted change in Energy=-1.791703D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028879 0.803273 -0.000000 2 1 0 -1.631531 0.870752 -0.821532 3 1 0 -1.631531 0.870752 0.821532 4 14 0 -0.092749 -0.724616 0.000000 5 1 0 0.730750 -0.898727 -1.231911 6 1 0 0.730750 -0.898727 1.231911 7 1 0 -1.414895 -1.467042 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021106 0.000000 3 H 1.021106 1.643065 0.000000 4 Si 1.791865 2.363887 2.363887 0.000000 5 H 2.740567 2.979907 3.595562 1.492003 0.000000 6 H 2.740567 3.595562 2.979907 1.492003 2.463822 7 H 2.302897 2.487394 2.487394 1.516333 2.538578 6 7 6 H 0.000000 7 H 2.538578 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.048078 1.185255 -0.000000 2 1 0 0.430538 1.557639 0.821532 3 1 0 0.430538 1.557639 -0.821532 4 14 0 -0.048078 -0.606610 0.000000 5 1 0 -0.659298 -1.185295 1.231911 6 1 0 -0.659298 -1.185295 -1.231911 7 1 0 1.467157 -0.548930 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.9310981 12.1816288 11.8794257 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.6221958264 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.6119488933 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.36D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000677 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.01D-04 Max=3.31D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.15D-04 Max=1.00D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.08D-05 Max=3.82D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.35D-05 Max=1.45D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.74D-06 Max=3.11D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.21D-07 Max=5.50D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.87D-07 Max=2.37D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.20D-08 Max=6.19D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.36D-08 Max=1.21D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.48D-09 Max=1.22D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.57D-04 DF= -1.36D-12 DXR= 1.57D-04 DFR= 2.50D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.81D-07 Max=6.90D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.58D-07 Max=4.38D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.38D-07 Max=9.85D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.89D-08 Max=2.89D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.81D-09 Max=9.52D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.60D-09 Max=1.55D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.63D-10 Max=3.49D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.04D-10 Max=7.19D-10 NDo= 1 Linear equations converged to 1.775D-10 1.775D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.069562570 a.u. after 3 cycles Convg = 0.1771D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0040 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.023236659 0.014351360 0.000000000 2 1 0.000005757 0.000028803 -0.000037040 3 1 0.000005757 0.000028803 0.000037040 4 14 -0.039077524 0.013833071 -0.000000000 5 1 -0.000010834 -0.000012968 -0.000005108 6 1 -0.000010834 -0.000012968 0.000005108 7 1 0.015851017 -0.028216102 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.039077524 RMS 0.012931539 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.074594666 RMS 0.018148360 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 7 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.79D-05 DEPred=-1.79D-05 R= 9.97D-01 TightC=F SS= 1.41D+00 RLast= 3.43D-02 DXNew= 3.1674D-01 1.0285D-01 Trust test= 9.97D-01 RLast= 3.43D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01561 0.02387 0.05503 0.09753 0.09860 Eigenvalues --- 0.12481 0.16000 0.16000 0.16555 0.16944 Eigenvalues --- 0.17295 0.27155 0.44404 0.466351000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.86868152D-07 EMin= 1.56109984D-02 Quartic linear search produced a step of -0.00128. Iteration 1 RMS(Cart)= 0.00046424 RMS(Int)= 0.00000033 Iteration 2 RMS(Cart)= 0.00000024 RMS(Int)= 0.00000021 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 7.51D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92961 0.00003 0.00000 -0.00001 -0.00001 1.92961 R2 1.92961 0.00003 0.00000 -0.00001 -0.00001 1.92961 R3 3.38613 0.00014 0.00002 0.00018 0.00020 3.38633 R4 2.81948 -0.00000 -0.00000 0.00000 0.00000 2.81948 R5 2.81948 -0.00000 -0.00000 0.00000 0.00000 2.81948 R6 2.86545 -0.00001 -0.00000 -0.00004 -0.00004 2.86541 A1 1.86984 0.00000 -0.00001 0.00060 0.00059 1.87043 A2 1.94409 0.00003 -0.00002 0.00072 0.00070 1.94480 A3 1.94409 0.00003 -0.00002 0.00072 0.00070 1.94480 A4 1.96910 -0.00615 0.00000 0.00009 0.00009 1.96919 A5 1.96910 -0.00615 0.00000 0.00009 0.00009 1.96919 A6 1.53275 0.07459 -0.00000 0.00000 0.00000 1.53275 A7 1.94280 -0.00458 0.00000 0.00007 0.00007 1.94287 A8 2.00879 -0.02208 -0.00000 -0.00012 -0.00012 2.00866 A9 2.00879 -0.02208 -0.00000 -0.00012 -0.00012 2.00866 D1 0.98809 0.00835 0.00001 -0.00098 -0.00097 0.98712 D2 -3.07464 -0.00839 0.00002 -0.00074 -0.00073 -3.07537 D3 -1.04328 -0.00002 0.00001 -0.00086 -0.00085 -1.04413 D4 3.07464 0.00839 -0.00002 0.00074 0.00073 3.07537 D5 -0.98809 -0.00835 -0.00001 0.00098 0.00097 -0.98712 D6 1.04328 0.00002 -0.00001 0.00086 0.00085 1.04413 Item Value Threshold Converged? Maximum Force 0.000141 0.000450 YES RMS Force 0.000037 0.000300 YES Maximum Displacement 0.001038 0.001800 YES RMS Displacement 0.000464 0.001200 YES Predicted change in Energy=-9.811882D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0211 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0211 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7919 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.492 -DE/DX = 0.0 ! ! R5 R(4,6) 1.492 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5163 -DE/DX = 0.0 ! ! A1 A(2,1,3) 107.1338 -DE/DX = 0.0 ! ! A2 A(2,1,4) 111.3883 -DE/DX = 0.0 ! ! A3 A(3,1,4) 111.3883 -DE/DX = 0.0 ! ! A4 A(1,4,5) 112.8213 -DE/DX = -0.0062 ! ! A5 A(1,4,6) 112.8213 -DE/DX = -0.0062 ! ! A6 A(1,4,7) 87.82 -DE/DX = 0.0746 ! ! A7 A(5,4,6) 111.3142 -DE/DX = -0.0046 ! ! A8 A(5,4,7) 115.0951 -DE/DX = -0.0221 ! ! A9 A(6,4,7) 115.0951 -DE/DX = -0.0221 ! ! D1 D(2,1,4,5) 56.6132 -DE/DX = 0.0084 ! ! D2 D(2,1,4,6) -176.164 -DE/DX = -0.0084 ! ! D3 D(2,1,4,7) -59.7754 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 176.164 -DE/DX = 0.0084 ! ! D5 D(3,1,4,6) -56.6132 -DE/DX = -0.0084 ! ! D6 D(3,1,4,7) 59.7754 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01468657 RMS(Int)= 0.00339584 Iteration 2 RMS(Cart)= 0.00016394 RMS(Int)= 0.00339159 Iteration 3 RMS(Cart)= 0.00000112 RMS(Int)= 0.00339159 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00339159 Iteration 1 RMS(Cart)= 0.00290673 RMS(Int)= 0.00068214 Iteration 2 RMS(Cart)= 0.00058367 RMS(Int)= 0.00073513 Iteration 3 RMS(Cart)= 0.00011783 RMS(Int)= 0.00075743 Iteration 4 RMS(Cart)= 0.00002381 RMS(Int)= 0.00076234 Iteration 5 RMS(Cart)= 0.00000481 RMS(Int)= 0.00076335 Iteration 6 RMS(Cart)= 0.00000097 RMS(Int)= 0.00076356 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.026666 0.810517 -0.000000 2 1 0 -1.628478 0.883088 -0.821710 3 1 0 -1.628478 0.883088 0.821710 4 14 0 -0.100876 -0.723781 0.000000 5 1 0 0.724017 -0.897082 -1.231095 6 1 0 0.724017 -0.897082 1.231095 7 1 0 -1.401621 -1.503082 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021103 0.000000 3 H 1.021103 1.643420 0.000000 4 Si 1.791971 2.364488 2.364488 0.000000 5 H 2.737952 2.978395 3.594057 1.492004 0.000000 6 H 2.737952 3.594057 2.978395 1.492004 2.462191 7 H 2.343786 2.533866 2.533866 1.516327 2.530053 6 7 6 H 0.000000 7 H 2.530053 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.047631 1.186990 -0.000000 2 1 0 0.430153 1.560041 0.821710 3 1 0 0.430153 1.560041 -0.821710 4 14 0 -0.047631 -0.604981 0.000000 5 1 0 -0.664377 -1.179529 1.231095 6 1 0 -0.664377 -1.179529 -1.231095 7 1 0 1.468689 -0.600217 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7513700 12.1623824 11.8690682 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.5874251195 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.5772016146 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 0.999998 0.000000 0.000000 0.001748 Ang= 0.20 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.63D-04 Max=3.91D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.10D-04 Max=1.06D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.45D-05 Max=4.05D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.15D-05 Max=1.06D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.45D-06 Max=4.51D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.12D-07 Max=6.77D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.71D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.49D-08 Max=4.50D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.76D-09 Max=6.62D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.49D-09 Max=1.21D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 6.28D-04 DF= -2.52D-11 DXR= 6.28D-04 DFR= 3.93D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.40D-06 Max=2.42D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=8.77D-07 Max=7.69D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.75D-07 Max=3.30D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.15D-08 Max=1.00D-06 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.17D-08 Max=1.07D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.98D-09 Max=2.90D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=9.95D-10 Max=1.07D-08 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.49D-10 Max=1.11D-09 NDo= 1 Linear equations converged to 4.627D-10 4.627D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.072662202 a.u. after 3 cycles Convg = 0.5852D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.022514700 0.011076279 0.000000000 2 1 -0.000076894 0.000168077 -0.000116871 3 1 -0.000076894 0.000168077 0.000116871 4 14 -0.037850171 0.013707242 -0.000000000 5 1 0.000062905 0.000090751 -0.000067851 6 1 0.000062905 0.000090751 0.000067851 7 1 0.015363449 -0.025301175 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.037850171 RMS 0.012201549 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.067737141 RMS 0.016553375 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 8 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01561 0.02387 0.05505 0.09495 0.09789 Eigenvalues --- 0.12488 0.16000 0.16000 0.16541 0.16944 Eigenvalues --- 0.17292 0.27173 0.44404 0.466361000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-3.15698763D-05 EMin= 1.56090788D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00559022 RMS(Int)= 0.00009534 Iteration 2 RMS(Cart)= 0.00007209 RMS(Int)= 0.00006763 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00006763 Iteration 1 RMS(Cart)= 0.00000022 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 2.39D-11 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92961 0.00015 0.00000 -0.00056 -0.00056 1.92905 R2 1.92961 0.00015 0.00000 -0.00056 -0.00056 1.92905 R3 3.38633 -0.00178 0.00000 -0.01199 -0.01199 3.37434 R4 2.81948 0.00008 0.00000 0.00074 0.00074 2.82022 R5 2.81948 0.00008 0.00000 0.00074 0.00074 2.82022 R6 2.86544 -0.00018 0.00000 -0.00034 -0.00034 2.86510 A1 1.87043 -0.00011 0.00000 0.00467 0.00445 1.87489 A2 1.94480 0.00021 0.00000 0.01203 0.01190 1.95670 A3 1.94480 0.00021 0.00000 0.01203 0.01190 1.95670 A4 1.96610 -0.00633 0.00000 -0.00089 -0.00090 1.96520 A5 1.96610 -0.00633 0.00000 -0.00089 -0.00090 1.96520 A6 1.56765 0.06774 0.00000 0.00000 0.00000 1.56765 A7 1.94086 -0.00380 0.00000 -0.00069 -0.00069 1.94017 A8 1.99827 -0.02025 0.00000 0.00127 0.00127 1.99954 A9 1.99827 -0.02025 0.00000 0.00127 0.00127 1.99954 D1 0.99110 0.00780 0.00000 -0.00986 -0.00992 0.98118 D2 -3.07935 -0.00794 0.00000 -0.01230 -0.01235 -3.09170 D3 -1.04413 -0.00007 0.00000 -0.01108 -0.01114 -1.05526 D4 3.07935 0.00794 0.00000 0.01230 0.01235 3.09170 D5 -0.99110 -0.00780 0.00000 0.00986 0.00992 -0.98118 D6 1.04413 0.00007 0.00000 0.01108 0.01114 1.05526 Item Value Threshold Converged? Maximum Force 0.001781 0.000450 NO RMS Force 0.000418 0.000300 NO Maximum Displacement 0.017133 0.001800 NO RMS Displacement 0.005581 0.001200 NO Predicted change in Energy=-1.583209D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028685 0.801451 -0.000000 2 1 0 -1.626600 0.888133 -0.822819 3 1 0 -1.626600 0.888133 0.822819 4 14 0 -0.102545 -0.725222 0.000000 5 1 0 0.723813 -0.894657 -1.231127 6 1 0 0.723813 -0.894657 1.231127 7 1 0 -1.401281 -1.507514 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020807 0.000000 3 H 1.020807 1.645638 0.000000 4 Si 1.785626 2.366999 2.366999 0.000000 5 H 2.731978 2.978170 3.594645 1.492397 0.000000 6 H 2.731978 3.594645 2.978170 1.492397 2.462254 7 H 2.338834 2.543015 2.543015 1.516145 2.531263 6 7 6 H 0.000000 7 H 2.531263 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.046591 1.181898 0.000000 2 1 0 0.419656 1.566127 0.822819 3 1 0 0.419656 1.566127 -0.822819 4 14 0 -0.046591 -0.603728 -0.000000 5 1 0 -0.665229 -1.177194 1.231127 6 1 0 -0.665229 -1.177194 -1.231127 7 1 0 1.469547 -0.598965 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.8344138 12.2217970 11.9206768 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.6907764537 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.6805527571 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000000 0.000000 -0.000687 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.95D-04 Max=3.18D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.06D-04 Max=9.39D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.88D-05 Max=3.75D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.32D-05 Max=1.44D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.76D-06 Max=3.27D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.10D-07 Max=5.48D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.75D-07 Max=2.26D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.08D-08 Max=6.33D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.27D-08 Max=1.11D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.38D-09 Max=1.17D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.43D-04 DF= -1.14D-12 DXR= 1.43D-04 DFR= 2.10D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.41D-07 Max=6.63D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.48D-07 Max=4.35D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.36D-07 Max=1.01D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.99D-08 Max=3.00D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.57D-09 Max=8.81D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.47D-09 Max=1.42D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.20D-10 Max=3.33D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=9.74D-11 Max=7.26D-10 NDo= 1 Linear equations converged to 1.700D-10 1.700D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.072678125 a.u. after 3 cycles Convg = 0.1669D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.021616794 0.013231269 0.000000000 2 1 0.000009960 0.000029757 -0.000036799 3 1 0.000009960 0.000029757 0.000036799 4 14 -0.037063709 0.012383306 -0.000000000 5 1 -0.000012071 -0.000014032 -0.000005049 6 1 -0.000012071 -0.000014032 0.000005049 7 1 0.015451136 -0.025646026 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.037063709 RMS 0.012082807 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.068477538 RMS 0.016724093 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 8 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.59D-05 DEPred=-1.58D-05 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 3.47D-02 DXNew= 3.1674D-01 1.0410D-01 Trust test= 1.01D+00 RLast= 3.47D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01451 0.02387 0.05514 0.09488 0.09791 Eigenvalues --- 0.12621 0.16000 0.16000 0.16543 0.16944 Eigenvalues --- 0.17284 0.28864 0.44404 0.465901000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.88920971D-07 EMin= 1.45112211D-02 Quartic linear search produced a step of 0.00553. Iteration 1 RMS(Cart)= 0.00048227 RMS(Int)= 0.00000078 Iteration 2 RMS(Cart)= 0.00000029 RMS(Int)= 0.00000072 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 9.92D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92905 0.00003 -0.00000 -0.00001 -0.00001 1.92903 R2 1.92905 0.00003 -0.00000 -0.00001 -0.00001 1.92903 R3 3.37434 0.00014 -0.00007 0.00019 0.00013 3.37447 R4 2.82022 -0.00000 0.00000 0.00000 0.00001 2.82023 R5 2.82022 -0.00000 0.00000 0.00000 0.00001 2.82023 R6 2.86510 -0.00000 -0.00000 -0.00003 -0.00003 2.86507 A1 1.87489 0.00001 0.00002 0.00059 0.00062 1.87550 A2 1.95670 0.00002 0.00007 0.00069 0.00075 1.95745 A3 1.95670 0.00002 0.00007 0.00069 0.00075 1.95745 A4 1.96520 -0.00622 -0.00000 0.00008 0.00007 1.96527 A5 1.96520 -0.00622 -0.00000 0.00008 0.00007 1.96527 A6 1.56765 0.06848 0.00000 0.00000 0.00000 1.56765 A7 1.94017 -0.00396 -0.00000 0.00008 0.00008 1.94024 A8 1.99954 -0.02055 0.00001 -0.00013 -0.00012 1.99942 A9 1.99954 -0.02055 0.00001 -0.00013 -0.00012 1.99942 D1 0.98118 0.00783 -0.00005 -0.00100 -0.00105 0.98012 D2 -3.09170 -0.00787 -0.00007 -0.00075 -0.00082 -3.09253 D3 -1.05526 -0.00002 -0.00006 -0.00088 -0.00094 -1.05620 D4 3.09170 0.00787 0.00007 0.00075 0.00082 3.09253 D5 -0.98118 -0.00783 0.00005 0.00100 0.00105 -0.98012 D6 1.05526 0.00002 0.00006 0.00088 0.00094 1.05620 Item Value Threshold Converged? Maximum Force 0.000141 0.000450 YES RMS Force 0.000037 0.000300 YES Maximum Displacement 0.001072 0.001800 YES RMS Displacement 0.000482 0.001200 YES Predicted change in Energy=-1.005130D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0208 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0208 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7856 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4924 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4924 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5161 -DE/DX = 0.0 ! ! A1 A(2,1,3) 107.423 -DE/DX = 0.0 ! ! A2 A(2,1,4) 112.1107 -DE/DX = 0.0 ! ! A3 A(3,1,4) 112.1107 -DE/DX = 0.0 ! ! A4 A(1,4,5) 112.5977 -DE/DX = -0.0062 ! ! A5 A(1,4,6) 112.5977 -DE/DX = -0.0062 ! ! A6 A(1,4,7) 89.82 -DE/DX = 0.0685 ! ! A7 A(5,4,6) 111.1633 -DE/DX = -0.004 ! ! A8 A(5,4,7) 114.5654 -DE/DX = -0.0206 ! ! A9 A(6,4,7) 114.5654 -DE/DX = -0.0206 ! ! D1 D(2,1,4,5) 56.2173 -DE/DX = 0.0078 ! ! D2 D(2,1,4,6) -177.1416 -DE/DX = -0.0079 ! ! D3 D(2,1,4,7) -60.4622 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 177.1416 -DE/DX = 0.0079 ! ! D5 D(3,1,4,6) -56.2173 -DE/DX = -0.0078 ! ! D6 D(3,1,4,7) 60.4622 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01450562 RMS(Int)= 0.00344570 Iteration 2 RMS(Cart)= 0.00015982 RMS(Int)= 0.00344173 Iteration 3 RMS(Cart)= 0.00000105 RMS(Int)= 0.00344173 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00344173 Iteration 1 RMS(Cart)= 0.00295521 RMS(Int)= 0.00071172 Iteration 2 RMS(Cart)= 0.00061013 RMS(Int)= 0.00076811 Iteration 3 RMS(Cart)= 0.00012659 RMS(Int)= 0.00079252 Iteration 4 RMS(Cart)= 0.00002629 RMS(Int)= 0.00079806 Iteration 5 RMS(Cart)= 0.00000546 RMS(Int)= 0.00079923 Iteration 6 RMS(Cart)= 0.00000113 RMS(Int)= 0.00079948 Iteration 7 RMS(Cart)= 0.00000024 RMS(Int)= 0.00079953 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.026531 0.808467 -0.000000 2 1 0 -1.623407 0.900367 -0.822999 3 1 0 -1.623407 0.900367 0.822999 4 14 0 -0.110959 -0.724646 0.000000 5 1 0 0.716761 -0.892964 -1.230369 6 1 0 0.716761 -0.892964 1.230369 7 1 0 -1.387302 -1.542962 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020801 0.000000 3 H 1.020801 1.645999 0.000000 4 Si 1.785696 2.367593 2.367593 0.000000 5 H 2.729055 2.976302 3.592874 1.492400 0.000000 6 H 2.729055 3.592874 2.976302 1.492400 2.460738 7 H 2.378944 2.589002 2.589002 1.516144 2.522576 6 7 6 H 0.000000 7 H 2.522576 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.046052 1.183574 -0.000000 2 1 0 0.419277 1.568509 0.822999 3 1 0 0.419277 1.568509 -0.822999 4 14 0 -0.046052 -0.602122 0.000000 5 1 0 -0.670392 -1.171025 1.230369 6 1 0 -0.670392 -1.171025 -1.230369 7 1 0 1.469327 -0.650274 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.6980129 12.2032204 11.9093877 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.6587868858 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.6485867278 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.32D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 0.999998 0.000000 0.000000 0.001785 Ang= 0.20 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.44D-04 Max=3.43D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.06D-04 Max=1.05D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.26D-05 Max=3.95D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.09D-05 Max=9.71D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.40D-06 Max=4.44D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.63D-07 Max=6.80D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.14D-07 Max=1.83D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.06D-08 Max=4.42D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.60D-09 Max=6.07D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.43D-09 Max=1.06D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 5.80D-04 DF= -2.01D-11 DXR= 5.79D-04 DFR= 3.36D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.00D-06 Max=2.02D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=7.19D-07 Max=5.96D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.24D-07 Max=2.32D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=6.73D-08 Max=8.10D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.00D-08 Max=9.95D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.92D-09 Max=2.82D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=8.45D-10 Max=9.99D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.23D-10 Max=9.72D-10 NDo= 1 Linear equations converged to 3.876D-10 3.876D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.075538133 a.u. after 3 cycles Convg = 0.4134D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.020814644 0.010140680 0.000000000 2 1 -0.000073246 0.000174310 -0.000113409 3 1 -0.000073246 0.000174310 0.000113409 4 14 -0.035663724 0.012120743 -0.000000000 5 1 0.000061506 0.000102564 -0.000073177 6 1 0.000061506 0.000102564 0.000073177 7 1 0.014872561 -0.022815171 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.035663724 RMS 0.011332125 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.061889946 RMS 0.015177869 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 9 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01451 0.02387 0.05517 0.09237 0.09706 Eigenvalues --- 0.12627 0.16000 0.16000 0.16530 0.16944 Eigenvalues --- 0.17281 0.28884 0.44404 0.465911000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.80144523D-05 EMin= 1.45096099D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00568905 RMS(Int)= 0.00009807 Iteration 2 RMS(Cart)= 0.00007389 RMS(Int)= 0.00006988 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00006988 Iteration 1 RMS(Cart)= 0.00000007 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 3.22D-11 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92903 0.00015 0.00000 -0.00054 -0.00054 1.92849 R2 1.92903 0.00015 0.00000 -0.00054 -0.00054 1.92849 R3 3.37448 -0.00159 0.00000 -0.01081 -0.01081 3.36367 R4 2.82023 0.00008 0.00000 0.00075 0.00075 2.82098 R5 2.82023 0.00008 0.00000 0.00075 0.00075 2.82098 R6 2.86510 -0.00021 0.00000 -0.00070 -0.00070 2.86440 A1 1.87550 -0.00011 0.00000 0.00459 0.00436 1.87986 A2 1.95745 0.00021 0.00000 0.01193 0.01180 1.96925 A3 1.95745 0.00021 0.00000 0.01193 0.01180 1.96925 A4 1.96189 -0.00633 0.00000 -0.00108 -0.00108 1.96081 A5 1.96189 -0.00633 0.00000 -0.00108 -0.00108 1.96081 A6 1.60256 0.06189 0.00000 0.00000 0.00000 1.60256 A7 1.93836 -0.00322 0.00000 -0.00051 -0.00051 1.93785 A8 1.98890 -0.01870 0.00000 0.00134 0.00134 1.99024 A9 1.98890 -0.01870 0.00000 0.00134 0.00134 1.99024 D1 0.98418 0.00725 0.00000 -0.01035 -0.01040 0.97378 D2 -3.09658 -0.00740 0.00000 -0.01279 -0.01285 -3.10943 D3 -1.05620 -0.00008 0.00000 -0.01157 -0.01163 -1.06783 D4 3.09658 0.00740 0.00000 0.01279 0.01285 3.10943 D5 -0.98418 -0.00725 0.00000 0.01035 0.01040 -0.97378 D6 1.05620 0.00008 0.00000 0.01157 0.01163 1.06783 Item Value Threshold Converged? Maximum Force 0.001592 0.000450 NO RMS Force 0.000380 0.000300 NO Maximum Displacement 0.016805 0.001800 NO RMS Displacement 0.005678 0.001200 NO Predicted change in Energy=-1.402810D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028939 0.799574 -0.000000 2 1 0 -1.621467 0.905624 -0.824083 3 1 0 -1.621467 0.905624 0.824083 4 14 0 -0.112594 -0.726409 0.000000 5 1 0 0.716511 -0.890564 -1.230479 6 1 0 0.716511 -0.890564 1.230479 7 1 0 -1.386639 -1.547620 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020514 0.000000 3 H 1.020514 1.648166 0.000000 4 Si 1.779975 2.370515 2.370515 0.000000 5 H 2.723461 2.976170 3.593558 1.492796 0.000000 6 H 2.723461 3.593558 2.976170 1.492796 2.460958 7 H 2.374293 2.598588 2.598588 1.515776 2.523696 6 7 6 H 0.000000 7 H 2.523696 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.044969 1.178882 -0.000000 2 1 0 0.408413 1.574837 0.824083 3 1 0 0.408413 1.574837 -0.824083 4 14 0 -0.044969 -0.601093 0.000000 5 1 0 -0.671258 -1.168654 1.230479 6 1 0 -0.671258 -1.168654 -1.230479 7 1 0 1.470042 -0.649234 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7813482 12.2562823 11.9547315 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.7514514841 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.7412519118 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.31D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000705 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.89D-04 Max=3.07D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.84D-05 Max=8.80D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.70D-05 Max=3.69D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.29D-05 Max=1.42D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.77D-06 Max=3.37D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.97D-07 Max=5.43D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.64D-07 Max=2.15D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.95D-08 Max=6.34D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.18D-08 Max=1.01D-07 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.30D-09 Max=1.12D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.34D-04 DF= -9.66D-13 DXR= 1.34D-04 DFR= 1.79D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.08D-07 Max=6.39D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.39D-07 Max=4.30D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.36D-07 Max=1.03D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.07D-08 Max=3.24D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.37D-09 Max=8.11D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.34D-09 Max=1.26D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.75D-10 Max=3.10D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=9.12D-11 Max=7.17D-10 NDo= 1 Linear equations converged to 1.638D-10 1.638D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.075552290 a.u. after 3 cycles Convg = 0.1570D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.019979992 0.012126935 0.000000000 2 1 0.000013370 0.000028955 -0.000036412 3 1 0.000013370 0.000028955 0.000036412 4 14 -0.034907056 0.010994100 -0.000000000 5 1 -0.000012837 -0.000013383 -0.000005659 6 1 -0.000012837 -0.000013383 0.000005659 7 1 0.014925998 -0.023152179 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.034907056 RMS 0.011221683 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.062547914 RMS 0.015328983 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 9 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.42D-05 DEPred=-1.40D-05 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 3.52D-02 DXNew= 3.1674D-01 1.0563D-01 Trust test= 1.01D+00 RLast= 3.52D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01337 0.02387 0.05530 0.09230 0.09709 Eigenvalues --- 0.12765 0.16000 0.16000 0.16528 0.16944 Eigenvalues --- 0.17272 0.30748 0.44404 0.465451000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.94936129D-07 EMin= 1.33650771D-02 Quartic linear search produced a step of 0.01138. Iteration 1 RMS(Cart)= 0.00050188 RMS(Int)= 0.00000125 Iteration 2 RMS(Cart)= 0.00000033 RMS(Int)= 0.00000120 Iteration 1 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.86D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92849 0.00002 -0.00001 -0.00001 -0.00002 1.92847 R2 1.92849 0.00002 -0.00001 -0.00001 -0.00002 1.92847 R3 3.36367 0.00015 -0.00012 0.00021 0.00009 3.36375 R4 2.82098 -0.00000 0.00001 -0.00000 0.00001 2.82098 R5 2.82098 -0.00000 0.00001 -0.00000 0.00001 2.82098 R6 2.86440 -0.00000 -0.00001 -0.00003 -0.00004 2.86437 A1 1.87986 0.00001 0.00005 0.00059 0.00064 1.88050 A2 1.96925 0.00002 0.00013 0.00065 0.00078 1.97004 A3 1.96925 0.00002 0.00013 0.00065 0.00078 1.97004 A4 1.96081 -0.00620 -0.00001 0.00007 0.00006 1.96087 A5 1.96081 -0.00620 -0.00001 0.00007 0.00006 1.96087 A6 1.60256 0.06255 0.00000 0.00000 0.00000 1.60256 A7 1.93785 -0.00338 -0.00001 0.00011 0.00011 1.93796 A8 1.99024 -0.01899 0.00002 -0.00014 -0.00012 1.99012 A9 1.99024 -0.01899 0.00002 -0.00014 -0.00012 1.99012 D1 0.97378 0.00727 -0.00012 -0.00103 -0.00115 0.97263 D2 -3.10943 -0.00731 -0.00015 -0.00076 -0.00090 -3.11033 D3 -1.06783 -0.00002 -0.00013 -0.00089 -0.00102 -1.06885 D4 3.10943 0.00731 0.00015 0.00076 0.00090 3.11033 D5 -0.97378 -0.00727 0.00012 0.00103 0.00115 -0.97263 D6 1.06783 0.00002 0.00013 0.00089 0.00102 1.06885 Item Value Threshold Converged? Maximum Force 0.000146 0.000450 YES RMS Force 0.000038 0.000300 YES Maximum Displacement 0.001102 0.001800 YES RMS Displacement 0.000502 0.001200 YES Predicted change in Energy=-1.013970D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0205 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0205 -DE/DX = 0.0 ! ! R3 R(1,4) 1.78 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4928 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4928 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5158 -DE/DX = 0.0 ! ! A1 A(2,1,3) 107.7083 -DE/DX = 0.0 ! ! A2 A(2,1,4) 112.8298 -DE/DX = 0.0 ! ! A3 A(3,1,4) 112.8298 -DE/DX = 0.0 ! ! A4 A(1,4,5) 112.3461 -DE/DX = -0.0062 ! ! A5 A(1,4,6) 112.3461 -DE/DX = -0.0062 ! ! A6 A(1,4,7) 91.82 -DE/DX = 0.0625 ! ! A7 A(5,4,6) 111.0307 -DE/DX = -0.0034 ! ! A8 A(5,4,7) 114.0324 -DE/DX = -0.019 ! ! A9 A(6,4,7) 114.0324 -DE/DX = -0.019 ! ! D1 D(2,1,4,5) 55.7932 -DE/DX = 0.0073 ! ! D2 D(2,1,4,6) -178.1571 -DE/DX = -0.0073 ! ! D3 D(2,1,4,7) -61.1819 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 178.1571 -DE/DX = 0.0073 ! ! D5 D(3,1,4,6) -55.7932 -DE/DX = -0.0073 ! ! D6 D(3,1,4,7) 61.1819 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01433446 RMS(Int)= 0.00348975 Iteration 2 RMS(Cart)= 0.00015600 RMS(Int)= 0.00348602 Iteration 3 RMS(Cart)= 0.00000097 RMS(Int)= 0.00348602 Iteration 1 RMS(Cart)= 0.00299503 RMS(Int)= 0.00073853 Iteration 2 RMS(Cart)= 0.00063351 RMS(Int)= 0.00079803 Iteration 3 RMS(Cart)= 0.00013462 RMS(Int)= 0.00082446 Iteration 4 RMS(Cart)= 0.00002863 RMS(Int)= 0.00083061 Iteration 5 RMS(Cart)= 0.00000609 RMS(Int)= 0.00083194 Iteration 6 RMS(Cart)= 0.00000130 RMS(Int)= 0.00083222 Iteration 7 RMS(Cart)= 0.00000028 RMS(Int)= 0.00083228 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.026851 0.806370 -0.000000 2 1 0 -1.618128 0.917741 -0.824266 3 1 0 -1.618128 0.917741 0.824266 4 14 0 -0.121282 -0.726088 0.000000 5 1 0 0.709136 -0.888826 -1.229787 6 1 0 0.709136 -0.888826 1.229787 7 1 0 -1.371968 -1.582448 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020504 0.000000 3 H 1.020504 1.648533 0.000000 4 Si 1.780023 2.371105 2.371105 0.000000 5 H 2.720242 2.973935 3.591515 1.492801 0.000000 6 H 2.720242 3.591515 2.973935 1.492801 2.459574 7 H 2.413619 2.644042 2.644042 1.515774 2.514853 6 7 6 H 0.000000 7 H 2.514853 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.044343 1.180505 -0.000000 2 1 0 0.408041 1.577194 0.824266 3 1 0 0.408041 1.577194 -0.824266 4 14 0 -0.044343 -0.599518 -0.000000 5 1 0 -0.676475 -1.162089 1.229787 6 1 0 -0.676475 -1.162089 -1.229787 7 1 0 1.468064 -0.700501 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.6885607 12.2382885 11.9423605 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.7219215443 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.7117453342 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.30D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 0.999998 -0.000000 -0.000000 0.001820 Ang= 0.21 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.27D-04 Max=3.00D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.02D-04 Max=1.03D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.10D-05 Max=3.92D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.04D-05 Max=8.76D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.39D-06 Max=4.29D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.97D-07 Max=7.30D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.28D-07 Max=1.85D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.81D-08 Max=4.53D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.43D-09 Max=6.51D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.37D-09 Max=1.00D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 5.34D-04 DF= -1.61D-11 DXR= 5.34D-04 DFR= 2.85D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.67D-06 Max=1.68D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=5.92D-07 Max=4.59D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.87D-07 Max=1.61D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=5.69D-08 Max=6.57D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.62D-09 Max=8.71D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.65D-09 Max=2.50D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=6.90D-10 Max=8.74D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.02D-10 Max=8.17D-10 NDo= 1 Linear equations converged to 3.247D-10 3.247D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.078175063 a.u. after 3 cycles Convg = 0.2981D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.019114320 0.009214480 0.000000000 2 1 -0.000071451 0.000175490 -0.000110328 3 1 -0.000071451 0.000175490 0.000110328 4 14 -0.033341728 0.010614728 -0.000000000 5 1 0.000060288 0.000112324 -0.000078081 6 1 0.000060288 0.000112324 0.000078081 7 1 0.014249735 -0.020404837 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.033341728 RMS 0.010452068 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.056198933 RMS 0.013825950 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 10 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01336 0.02387 0.05534 0.08986 0.09610 Eigenvalues --- 0.12771 0.16000 0.16000 0.16516 0.16944 Eigenvalues --- 0.17270 0.30770 0.44404 0.465461000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.46613811D-05 EMin= 1.33637892D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00571879 RMS(Int)= 0.00009825 Iteration 2 RMS(Cart)= 0.00007382 RMS(Int)= 0.00007028 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00007028 Iteration 1 RMS(Cart)= 0.00000009 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 8.97D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92847 0.00015 0.00000 -0.00052 -0.00052 1.92796 R2 1.92847 0.00015 0.00000 -0.00052 -0.00052 1.92796 R3 3.36376 -0.00142 0.00000 -0.00969 -0.00969 3.35407 R4 2.82098 0.00009 0.00000 0.00076 0.00076 2.82174 R5 2.82098 0.00009 0.00000 0.00076 0.00076 2.82174 R6 2.86440 -0.00023 0.00000 -0.00100 -0.00100 2.86340 A1 1.88050 -0.00012 0.00000 0.00443 0.00421 1.88471 A2 1.97004 0.00020 0.00000 0.01167 0.01153 1.98157 A3 1.97004 0.00020 0.00000 0.01167 0.01153 1.98157 A4 1.95720 -0.00625 0.00000 -0.00125 -0.00125 1.95594 A5 1.95720 -0.00625 0.00000 -0.00125 -0.00125 1.95594 A6 1.63747 0.05620 0.00000 0.00000 0.00000 1.63747 A7 1.93621 -0.00269 0.00000 -0.00031 -0.00032 1.93589 A8 1.97949 -0.01712 0.00000 0.00139 0.00139 1.98088 A9 1.97949 -0.01712 0.00000 0.00139 0.00139 1.98088 D1 0.97675 0.00667 0.00000 -0.01072 -0.01077 0.96597 D2 -3.11445 -0.00682 0.00000 -0.01311 -0.01317 -3.12761 D3 -1.06885 -0.00008 0.00000 -0.01192 -0.01197 -1.08082 D4 3.11445 0.00682 0.00000 0.01311 0.01317 3.12761 D5 -0.97675 -0.00667 0.00000 0.01072 0.01077 -0.96597 D6 1.06885 0.00008 0.00000 0.01192 0.01197 1.08082 Item Value Threshold Converged? Maximum Force 0.001416 0.000450 NO RMS Force 0.000346 0.000300 NO Maximum Displacement 0.016340 0.001800 NO RMS Displacement 0.005707 0.001200 NO Predicted change in Energy=-1.235016D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.029579 0.797723 -0.000000 2 1 0 -1.616111 0.923085 -0.825309 3 1 0 -1.616111 0.923085 0.825309 4 14 0 -0.122881 -0.728106 0.000000 5 1 0 0.708815 -0.886448 -1.229983 6 1 0 0.708815 -0.886448 1.229983 7 1 0 -1.371033 -1.587226 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020231 0.000000 3 H 1.020231 1.650618 0.000000 4 Si 1.774896 2.374301 2.374301 0.000000 5 H 2.715015 2.973795 3.592203 1.493201 0.000000 6 H 2.715015 3.592203 2.973795 1.493201 2.459966 7 H 2.409269 2.653839 2.653839 1.515246 2.515893 6 7 6 H 0.000000 7 H 2.515893 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.043233 1.176207 -0.000000 2 1 0 0.396952 1.583604 0.825309 3 1 0 0.396952 1.583604 -0.825309 4 14 0 -0.043233 -0.598690 0.000000 5 1 0 -0.677331 -1.159681 1.229983 6 1 0 -0.677331 -1.159681 -1.229983 7 1 0 1.468647 -0.699639 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7704846 12.2854342 11.9819182 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8045272408 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.7943521549 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.29D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000713 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.81D-04 Max=2.95D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.09D-05 Max=8.16D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.46D-05 Max=3.84D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.25D-05 Max=1.38D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.74D-06 Max=3.38D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.76D-07 Max=5.30D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.51D-07 Max=2.02D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.75D-08 Max=6.21D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.08D-08 Max=8.92D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.22D-09 Max=1.06D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.26D-04 DF= -7.96D-13 DXR= 1.25D-04 DFR= 1.52D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=5.69D-07 Max=6.04D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.22D-07 Max=4.15D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.32D-07 Max=1.01D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.04D-08 Max=3.37D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.02D-09 Max=7.25D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.21D-09 Max=1.09D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.26D-10 Max=2.75D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=8.29D-11 Max=6.84D-10 NDo= 1 Linear equations converged to 1.552D-10 1.552D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.078187541 a.u. after 3 cycles Convg = 0.1441D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.018341294 0.011030970 0.000000000 2 1 0.000014314 0.000026449 -0.000035956 3 1 0.000014314 0.000026449 0.000035956 4 14 -0.032618107 0.009678662 -0.000000000 5 1 -0.000012332 -0.000013635 -0.000004886 6 1 -0.000012332 -0.000013635 0.000004886 7 1 0.014272850 -0.020735261 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.032618107 RMS 0.010349542 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.056779685 RMS 0.013958739 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 10 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.25D-05 DEPred=-1.24D-05 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 3.54D-02 DXNew= 3.1674D-01 1.0619D-01 Trust test= 1.01D+00 RLast= 3.54D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01226 0.02387 0.05550 0.08981 0.09613 Eigenvalues --- 0.12909 0.16000 0.16000 0.16510 0.16944 Eigenvalues --- 0.17263 0.32716 0.44404 0.464971000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.83008896D-07 EMin= 1.22565442D-02 Quartic linear search produced a step of 0.01664. Iteration 1 RMS(Cart)= 0.00050113 RMS(Int)= 0.00000163 Iteration 2 RMS(Cart)= 0.00000035 RMS(Int)= 0.00000159 Iteration 1 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 7.21D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92796 0.00002 -0.00001 -0.00001 -0.00002 1.92794 R2 1.92796 0.00002 -0.00001 -0.00001 -0.00002 1.92794 R3 3.35407 0.00014 -0.00016 0.00020 0.00003 3.35410 R4 2.82174 -0.00000 0.00001 -0.00000 0.00001 2.82175 R5 2.82174 -0.00000 0.00001 -0.00000 0.00001 2.82175 R6 2.86340 -0.00000 -0.00002 -0.00001 -0.00003 2.86337 A1 1.88471 0.00001 0.00007 0.00056 0.00063 1.88533 A2 1.98157 0.00002 0.00019 0.00059 0.00078 1.98235 A3 1.98157 0.00002 0.00019 0.00059 0.00078 1.98235 A4 1.95594 -0.00610 -0.00002 0.00010 0.00008 1.95602 A5 1.95594 -0.00610 -0.00002 0.00010 0.00008 1.95602 A6 1.63747 0.05678 0.00000 0.00000 0.00000 1.63747 A7 1.93589 -0.00286 -0.00001 0.00010 0.00010 1.93599 A8 1.98088 -0.01740 0.00002 -0.00016 -0.00013 1.98074 A9 1.98088 -0.01740 0.00002 -0.00016 -0.00013 1.98074 D1 0.96597 0.00668 -0.00018 -0.00101 -0.00119 0.96478 D2 -3.12761 -0.00672 -0.00022 -0.00072 -0.00094 -3.12856 D3 -1.08082 -0.00002 -0.00020 -0.00087 -0.00107 -1.08189 D4 3.12761 0.00672 0.00022 0.00072 0.00094 3.12856 D5 -0.96597 -0.00668 0.00018 0.00101 0.00119 -0.96478 D6 1.08082 0.00002 0.00020 0.00087 0.00107 1.08189 Item Value Threshold Converged? Maximum Force 0.000144 0.000450 YES RMS Force 0.000037 0.000300 YES Maximum Displacement 0.001089 0.001800 YES RMS Displacement 0.000501 0.001200 YES Predicted change in Energy=-9.680887D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0202 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0202 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7749 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4932 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4932 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5152 -DE/DX = 0.0 ! ! A1 A(2,1,3) 107.9857 -DE/DX = 0.0 ! ! A2 A(2,1,4) 113.5356 -DE/DX = 0.0 ! ! A3 A(3,1,4) 113.5356 -DE/DX = 0.0 ! ! A4 A(1,4,5) 112.0674 -DE/DX = -0.0061 ! ! A5 A(1,4,6) 112.0674 -DE/DX = -0.0061 ! ! A6 A(1,4,7) 93.82 -DE/DX = 0.0568 ! ! A7 A(5,4,6) 110.9183 -DE/DX = -0.0029 ! ! A8 A(5,4,7) 113.4959 -DE/DX = -0.0174 ! ! A9 A(6,4,7) 113.4959 -DE/DX = -0.0174 ! ! D1 D(2,1,4,5) 55.3462 -DE/DX = 0.0067 ! ! D2 D(2,1,4,6) -179.1991 -DE/DX = -0.0067 ! ! D3 D(2,1,4,7) -61.9264 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) 179.1991 -DE/DX = 0.0067 ! ! D5 D(3,1,4,6) -55.3462 -DE/DX = -0.0067 ! ! D6 D(3,1,4,7) 61.9264 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01417240 RMS(Int)= 0.00352868 Iteration 2 RMS(Cart)= 0.00015249 RMS(Int)= 0.00352518 Iteration 3 RMS(Cart)= 0.00000090 RMS(Int)= 0.00352518 Iteration 1 RMS(Cart)= 0.00302724 RMS(Int)= 0.00076276 Iteration 2 RMS(Cart)= 0.00065400 RMS(Int)= 0.00082510 Iteration 3 RMS(Cart)= 0.00014189 RMS(Int)= 0.00085341 Iteration 4 RMS(Cart)= 0.00003081 RMS(Int)= 0.00086014 Iteration 5 RMS(Cart)= 0.00000669 RMS(Int)= 0.00086163 Iteration 6 RMS(Cart)= 0.00000145 RMS(Int)= 0.00086196 Iteration 7 RMS(Cart)= 0.00000032 RMS(Int)= 0.00086203 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.027545 0.804322 -0.000000 2 1 0 -1.612634 0.935051 -0.825489 3 1 0 -1.612634 0.935051 0.825489 4 14 0 -0.131836 -0.728007 0.000000 5 1 0 0.701135 -0.884684 -1.229340 6 1 0 0.701135 -0.884684 1.229340 7 1 0 -1.355705 -1.621385 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020221 0.000000 3 H 1.020221 1.650978 0.000000 4 Si 1.774916 2.374859 2.374859 0.000000 5 H 2.711522 2.971205 3.589886 1.493207 0.000000 6 H 2.711522 3.589886 2.971205 1.493207 2.458681 7 H 2.447803 2.698668 2.698668 1.515248 2.506909 6 7 6 H 0.000000 7 H 2.506909 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.042524 1.177777 0.000000 2 1 0 0.396625 1.585903 0.825489 3 1 0 0.396625 1.585903 -0.825489 4 14 0 -0.042524 -0.597139 -0.000000 5 1 0 -0.682582 -1.152759 1.229340 6 1 0 -0.682582 -1.152759 -1.229340 7 1 0 1.464914 -0.750790 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7218745 12.2681104 11.9685664 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.7774958529 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.7673436475 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.28D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 0.999998 -0.000000 -0.000000 0.001854 Ang= 0.21 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.13D-04 Max=2.62D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.86D-05 Max=1.01D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.95D-05 Max=3.86D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.00D-05 Max=7.84D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.37D-06 Max=4.10D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.07D-07 Max=7.45D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.23D-07 Max=1.79D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.40D-08 Max=4.54D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.22D-09 Max=6.72D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.30D-09 Max=9.33D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 4.90D-04 DF= -1.29D-11 DXR= 4.90D-04 DFR= 2.41D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.40D-06 Max=1.39D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.91D-07 Max=3.51D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.60D-07 Max=1.19D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.95D-08 Max=5.33D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=7.32D-09 Max=7.11D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.27D-09 Max=2.29D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.54D-10 Max=7.31D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=8.45D-11 Max=6.60D-10 NDo= 1 Linear equations converged to 2.725D-10 2.725D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.080574164 a.u. after 3 cycles Convg = 0.2199D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.017418870 0.008298410 0.000000000 2 1 -0.000070443 0.000171783 -0.000106166 3 1 -0.000070443 0.000171783 0.000106166 4 14 -0.030880959 0.009197415 -0.000000000 5 1 0.000058954 0.000119489 -0.000082200 6 1 0.000058954 0.000119489 0.000082200 7 1 0.013485066 -0.018078369 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.030880959 RMS 0.009560140 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.050640646 RMS 0.012494002 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 11 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01226 0.02387 0.05555 0.08745 0.09502 Eigenvalues --- 0.12915 0.16000 0.16000 0.16499 0.16944 Eigenvalues --- 0.17262 0.32741 0.44404 0.464971000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.12177932D-05 EMin= 1.22553875D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00561701 RMS(Int)= 0.00009388 Iteration 2 RMS(Cart)= 0.00007045 RMS(Int)= 0.00006737 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00006737 Iteration 1 RMS(Cart)= 0.00000010 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 7.48D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92794 0.00015 0.00000 -0.00047 -0.00047 1.92747 R2 1.92794 0.00015 0.00000 -0.00047 -0.00047 1.92747 R3 3.35411 -0.00126 0.00000 -0.00860 -0.00860 3.34551 R4 2.82175 0.00009 0.00000 0.00076 0.00076 2.82251 R5 2.82175 0.00009 0.00000 0.00076 0.00076 2.82251 R6 2.86340 -0.00023 0.00000 -0.00116 -0.00116 2.86225 A1 1.88533 -0.00012 0.00000 0.00414 0.00393 1.88926 A2 1.98235 0.00019 0.00000 0.01114 0.01101 1.99336 A3 1.98235 0.00019 0.00000 0.01114 0.01101 1.99336 A4 1.95207 -0.00608 0.00000 -0.00139 -0.00139 1.95068 A5 1.95207 -0.00608 0.00000 -0.00139 -0.00139 1.95068 A6 1.67237 0.05064 0.00000 0.00000 0.00000 1.67237 A7 1.93436 -0.00221 0.00000 -0.00013 -0.00013 1.93423 A8 1.97002 -0.01552 0.00000 0.00142 0.00142 1.97145 A9 1.97002 -0.01552 0.00000 0.00142 0.00142 1.97145 D1 0.96894 0.00607 0.00000 -0.01081 -0.01086 0.95808 D2 -3.13272 -0.00622 0.00000 -0.01312 -0.01317 3.13730 D3 -1.08189 -0.00007 0.00000 -0.01197 -0.01202 -1.09391 D4 3.13272 0.00622 0.00000 0.01312 0.01317 -3.13730 D5 -0.96894 -0.00607 0.00000 0.01081 0.01086 -0.95808 D6 1.08189 0.00007 0.00000 0.01197 0.01202 1.09391 Item Value Threshold Converged? Maximum Force 0.001259 0.000450 NO RMS Force 0.000314 0.000300 NO Maximum Displacement 0.015605 0.001800 NO RMS Displacement 0.005606 0.001200 NO Predicted change in Energy=-1.062648D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.030471 0.796064 -0.000000 2 1 0 -1.610554 0.940300 -0.826464 3 1 0 -1.610554 0.940300 0.826464 4 14 0 -0.133383 -0.730182 0.000000 5 1 0 0.700741 -0.882339 -1.229615 6 1 0 0.700741 -0.882339 1.229615 7 1 0 -1.354604 -1.626140 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019972 0.000000 3 H 1.019972 1.652928 0.000000 4 Si 1.770366 2.378148 2.378148 0.000000 5 H 2.706674 2.970964 3.590481 1.493609 0.000000 6 H 2.706674 3.590481 2.970964 1.493609 2.459230 7 H 2.443795 2.708352 2.708352 1.514636 2.507915 6 7 6 H 0.000000 7 H 2.507915 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.041417 1.173882 -0.000000 2 1 0 0.385589 1.592171 0.826464 3 1 0 0.385589 1.592171 -0.826464 4 14 0 -0.041417 -0.596484 0.000000 5 1 0 -0.683420 -1.150331 1.229615 6 1 0 -0.683420 -1.150331 -1.229615 7 1 0 1.465412 -0.750073 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7989102 12.3096790 12.0028510 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8504058517 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8402550396 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.28D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000703 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.69D-04 Max=2.80D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=8.28D-05 Max=7.46D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.14D-05 Max=3.90D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.19D-05 Max=1.32D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.64D-06 Max=3.29D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.40D-07 Max=5.01D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.34D-07 Max=1.86D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.41D-08 Max=5.90D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=9.71D-09 Max=7.76D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.14D-09 Max=9.80D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.18D-04 DF= -6.25D-13 DXR= 1.18D-04 DFR= 1.28D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=5.13D-07 Max=5.50D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.90D-07 Max=3.84D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.24D-07 Max=9.54D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.84D-08 Max=3.32D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.36D-09 Max=6.47D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.06D-09 Max=9.47D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.72D-10 Max=2.29D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=7.17D-11 Max=6.17D-10 NDo= 1 Linear equations converged to 1.415D-10 1.415D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.080584957 a.u. after 3 cycles Convg = 0.1265D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.016702317 0.009941564 0.000000000 2 1 0.000015063 0.000023180 -0.000033506 3 1 0.000015063 0.000023180 0.000033506 4 14 -0.030199351 0.008433734 -0.000000000 5 1 -0.000011684 -0.000014385 -0.000003475 6 1 -0.000011684 -0.000014385 0.000003475 7 1 0.013490277 -0.018392887 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.030199351 RMS 0.009464775 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.051143538 RMS 0.012608397 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 11 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.08D-05 DEPred=-1.06D-05 R= 1.02D+00 TightC=F SS= 1.41D+00 RLast= 3.48D-02 DXNew= 3.1674D-01 1.0454D-01 Trust test= 1.02D+00 RLast= 3.48D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01127 0.02387 0.05574 0.08743 0.09505 Eigenvalues --- 0.13047 0.16000 0.16000 0.16493 0.16944 Eigenvalues --- 0.17257 0.34635 0.44404 0.464461000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.44239818D-07 EMin= 1.12711931D-02 Quartic linear search produced a step of 0.01829. Iteration 1 RMS(Cart)= 0.00045241 RMS(Int)= 0.00000162 Iteration 2 RMS(Cart)= 0.00000029 RMS(Int)= 0.00000159 Iteration 1 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 6.17D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92747 0.00002 -0.00001 -0.00000 -0.00001 1.92745 R2 1.92747 0.00002 -0.00001 -0.00000 -0.00001 1.92745 R3 3.34551 0.00013 -0.00016 0.00016 0.00000 3.34551 R4 2.82251 -0.00000 0.00001 -0.00000 0.00001 2.82252 R5 2.82251 -0.00000 0.00001 -0.00000 0.00001 2.82252 R6 2.86225 0.00000 -0.00002 0.00000 -0.00002 2.86223 A1 1.88926 0.00001 0.00007 0.00049 0.00056 1.88982 A2 1.99336 0.00001 0.00020 0.00050 0.00070 1.99406 A3 1.99336 0.00001 0.00020 0.00050 0.00070 1.99406 A4 1.95068 -0.00591 -0.00003 0.00011 0.00009 1.95077 A5 1.95068 -0.00591 -0.00003 0.00011 0.00009 1.95077 A6 1.67237 0.05114 0.00000 0.00000 0.00000 1.67237 A7 1.93423 -0.00239 -0.00000 0.00008 0.00008 1.93430 A8 1.97145 -0.01579 0.00003 -0.00016 -0.00013 1.97132 A9 1.97145 -0.01579 0.00003 -0.00016 -0.00013 1.97132 D1 0.95808 0.00608 -0.00020 -0.00092 -0.00112 0.95696 D2 3.13730 -0.00611 -0.00024 -0.00064 -0.00088 3.13642 D3 -1.09391 -0.00002 -0.00022 -0.00078 -0.00100 -1.09491 D4 -3.13730 0.00611 0.00024 0.00064 0.00088 -3.13642 D5 -0.95808 -0.00608 0.00020 0.00092 0.00112 -0.95696 D6 1.09391 0.00002 0.00022 0.00078 0.00100 1.09491 Item Value Threshold Converged? Maximum Force 0.000132 0.000450 YES RMS Force 0.000034 0.000300 YES Maximum Displacement 0.000972 0.001800 YES RMS Displacement 0.000452 0.001200 YES Predicted change in Energy=-7.801007D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.02 -DE/DX = 0.0 ! ! R2 R(1,3) 1.02 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7704 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4936 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4936 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5146 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.2468 -DE/DX = 0.0 ! ! A2 A(2,1,4) 114.211 -DE/DX = 0.0 ! ! A3 A(3,1,4) 114.211 -DE/DX = 0.0 ! ! A4 A(1,4,5) 111.7656 -DE/DX = -0.0059 ! ! A5 A(1,4,6) 111.7656 -DE/DX = -0.0059 ! ! A6 A(1,4,7) 95.82 -DE/DX = 0.0511 ! ! A7 A(5,4,6) 110.8231 -DE/DX = -0.0024 ! ! A8 A(5,4,7) 112.9555 -DE/DX = -0.0158 ! ! A9 A(6,4,7) 112.9555 -DE/DX = -0.0158 ! ! D1 D(2,1,4,5) 54.8937 -DE/DX = 0.0061 ! ! D2 D(2,1,4,6) 179.754 -DE/DX = -0.0061 ! ! D3 D(2,1,4,7) -62.6762 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -179.754 -DE/DX = 0.0061 ! ! D5 D(3,1,4,6) -54.8937 -DE/DX = -0.0061 ! ! D6 D(3,1,4,7) 62.6762 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01401932 RMS(Int)= 0.00356303 Iteration 2 RMS(Cart)= 0.00014925 RMS(Int)= 0.00355971 Iteration 3 RMS(Cart)= 0.00000083 RMS(Int)= 0.00355971 Iteration 1 RMS(Cart)= 0.00305284 RMS(Int)= 0.00078453 Iteration 2 RMS(Cart)= 0.00067180 RMS(Int)= 0.00084946 Iteration 3 RMS(Cart)= 0.00014842 RMS(Int)= 0.00087951 Iteration 4 RMS(Cart)= 0.00003282 RMS(Int)= 0.00088680 Iteration 5 RMS(Cart)= 0.00000726 RMS(Int)= 0.00088844 Iteration 6 RMS(Cart)= 0.00000161 RMS(Int)= 0.00088881 Iteration 7 RMS(Cart)= 0.00000036 RMS(Int)= 0.00088889 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028447 0.802510 -0.000000 2 1 0 -1.606942 0.952049 -0.826626 3 1 0 -1.606942 0.952049 0.826626 4 14 0 -0.142599 -0.730290 0.000000 5 1 0 0.692761 -0.880546 -1.229016 6 1 0 0.692761 -0.880546 1.229016 7 1 0 -1.338676 -1.659561 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019965 0.000000 3 H 1.019965 1.653251 0.000000 4 Si 1.770368 2.378628 2.378628 0.000000 5 H 2.702908 2.967988 3.587854 1.493614 0.000000 6 H 2.702908 3.587854 2.967988 1.493614 2.458032 7 H 2.481540 2.752414 2.752414 1.514644 2.498816 6 7 6 H 0.000000 7 H 2.498816 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.040634 1.175409 -0.000000 2 1 0 0.385407 1.594345 0.826626 3 1 0 0.385407 1.594345 -0.826626 4 14 0 -0.040634 -0.594959 0.000000 5 1 0 -0.688711 -1.143045 1.229016 6 1 0 -0.688711 -1.143045 -1.229016 7 1 0 1.459925 -0.801043 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7934726 12.2930392 11.9885978 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8257546753 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8156259318 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.27D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999998 0.000000 0.000000 0.001896 Ang= 0.22 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.01D-04 Max=2.52D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.51D-05 Max=9.83D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.80D-05 Max=3.75D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.66D-06 Max=6.97D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.31D-06 Max=3.89D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.96D-07 Max=7.28D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.06D-07 Max=1.75D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.95D-08 Max=4.41D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=7.91D-09 Max=6.63D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.22D-09 Max=9.06D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 4.47D-04 DF= -1.02D-11 DXR= 4.46D-04 DFR= 1.99D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.17D-06 Max=1.19D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.11D-07 Max=2.88D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.41D-07 Max=1.07D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.43D-08 Max=4.29D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.12D-09 Max=5.37D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.84D-09 Max=2.11D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.41D-10 Max=5.83D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.88D-11 Max=5.05D-10 NDo= 1 Linear equations converged to 2.291D-10 2.291D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.082737573 a.u. after 3 cycles Convg = 0.1656D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.015729074 0.007387091 0.000000000 2 1 -0.000069665 0.000166091 -0.000101466 3 1 -0.000069665 0.000166091 0.000101466 4 14 -0.028313282 0.007885694 -0.000000000 5 1 0.000057305 0.000122365 -0.000085571 6 1 0.000057305 0.000122365 0.000085571 7 1 0.012608927 -0.015849697 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.028313282 RMS 0.008663370 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.045241700 RMS 0.011190412 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 12 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01127 0.02387 0.05580 0.08515 0.09381 Eigenvalues --- 0.13052 0.16000 0.16000 0.16483 0.16944 Eigenvalues --- 0.17257 0.34662 0.44404 0.464471000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.81502496D-05 EMin= 1.12698804D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00544535 RMS(Int)= 0.00008781 Iteration 2 RMS(Cart)= 0.00006572 RMS(Int)= 0.00006324 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00006324 Iteration 1 RMS(Cart)= 0.00000010 RMS(Int)= 0.00000003 ClnCor: largest displacement from symmetrization is 8.75D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92745 0.00015 0.00000 -0.00042 -0.00042 1.92703 R2 1.92745 0.00015 0.00000 -0.00042 -0.00042 1.92703 R3 3.34551 -0.00112 0.00000 -0.00764 -0.00764 3.33787 R4 2.82252 0.00009 0.00000 0.00076 0.00076 2.82328 R5 2.82252 0.00009 0.00000 0.00076 0.00076 2.82328 R6 2.86226 -0.00023 0.00000 -0.00125 -0.00125 2.86101 A1 1.88982 -0.00012 0.00000 0.00383 0.00363 1.89345 A2 1.99406 0.00017 0.00000 0.01052 0.01039 2.00445 A3 1.99406 0.00017 0.00000 0.01052 0.01039 2.00445 A4 1.94653 -0.00582 0.00000 -0.00143 -0.00143 1.94510 A5 1.94653 -0.00582 0.00000 -0.00143 -0.00143 1.94510 A6 1.70728 0.04524 0.00000 0.00000 0.00000 1.70728 A7 1.93281 -0.00179 0.00000 -0.00000 -0.00000 1.93280 A8 1.96052 -0.01393 0.00000 0.00140 0.00140 1.96192 A9 1.96052 -0.01393 0.00000 0.00140 0.00140 1.96192 D1 0.96115 0.00546 0.00000 -0.01081 -0.01086 0.95029 D2 3.13222 -0.00560 0.00000 -0.01295 -0.01299 3.11923 D3 -1.09491 -0.00007 0.00000 -0.01188 -0.01193 -1.10683 D4 -3.13222 0.00560 0.00000 0.01295 0.01299 -3.11923 D5 -0.96115 -0.00546 0.00000 0.01081 0.01086 -0.95029 D6 1.09491 0.00007 0.00000 0.01188 0.01193 1.10683 Item Value Threshold Converged? Maximum Force 0.001118 0.000450 NO RMS Force 0.000286 0.000300 YES Maximum Displacement 0.014774 0.001800 NO RMS Displacement 0.005435 0.001200 NO Predicted change in Energy=-9.091141D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.031516 0.794692 -0.000000 2 1 0 -1.604829 0.957125 -0.827528 3 1 0 -1.604829 0.957125 0.827528 4 14 0 -0.144083 -0.732515 0.000000 5 1 0 0.692306 -0.878280 -1.229345 6 1 0 0.692306 -0.878280 1.229345 7 1 0 -1.337439 -1.664200 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019742 0.000000 3 H 1.019742 1.655055 0.000000 4 Si 1.766323 2.381903 2.381903 0.000000 5 H 2.698460 2.967659 3.588352 1.494016 0.000000 6 H 2.698460 3.588352 2.967659 1.494016 2.458691 7 H 2.477850 2.761819 2.761819 1.513981 2.499765 6 7 6 H 0.000000 7 H 2.499765 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.039547 1.171885 0.000000 2 1 0 0.374544 1.600371 0.827528 3 1 0 0.374544 1.600371 -0.827528 4 14 0 -0.039547 -0.594438 -0.000000 5 1 0 -0.689475 -1.140687 1.229345 6 1 0 -0.689475 -1.140687 -1.229345 7 1 0 1.460354 -0.800432 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.8664265 12.3297365 12.0183356 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8901860341 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8800587987 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.27D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000690 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.55D-04 Max=2.64D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=7.56D-05 Max=6.80D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.81D-05 Max=3.91D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.12D-05 Max=1.24D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.49D-06 Max=3.14D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.99D-07 Max=4.66D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.17D-07 Max=1.71D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.02D-08 Max=5.49D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.65D-09 Max=6.76D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.07D-09 Max=8.90D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.12D-04 DF= -5.12D-13 DXR= 1.12D-04 DFR= 1.14D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.58D-07 Max=4.93D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.55D-07 Max=3.48D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.15D-07 Max=8.79D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.58D-08 Max=3.20D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=7.65D-09 Max=5.91D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.14D-10 Max=8.36D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.22D-10 Max=1.91D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.05D-11 Max=5.39D-10 NDo= 1 Linear equations converged to 1.273D-10 1.273D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.082746810 a.u. after 3 cycles Convg = 0.1085D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.015064439 0.008874704 0.000000000 2 1 0.000015808 0.000019035 -0.000029806 3 1 0.000015808 0.000019035 0.000029806 4 14 -0.027674006 0.007259147 -0.000000000 5 1 -0.000011122 -0.000012932 -0.000002983 6 1 -0.000011122 -0.000012932 0.000002983 7 1 0.012600195 -0.016146059 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.027674006 RMS 0.008573790 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.045669820 RMS 0.011287492 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 12 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -9.24D-06 DEPred=-9.09D-06 R= 1.02D+00 TightC=F SS= 1.41D+00 RLast= 3.40D-02 DXNew= 3.1674D-01 1.0202D-01 Trust test= 1.02D+00 RLast= 3.40D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01041 0.02387 0.05599 0.08509 0.09385 Eigenvalues --- 0.13180 0.16000 0.16000 0.16477 0.16944 Eigenvalues --- 0.17254 0.36507 0.44404 0.463971000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.11952976D-07 EMin= 1.04126003D-02 Quartic linear search produced a step of 0.01859. Iteration 1 RMS(Cart)= 0.00040030 RMS(Int)= 0.00000148 Iteration 2 RMS(Cart)= 0.00000024 RMS(Int)= 0.00000146 Iteration 1 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 6.65D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92703 0.00002 -0.00001 -0.00000 -0.00001 1.92702 R2 1.92703 0.00002 -0.00001 -0.00000 -0.00001 1.92702 R3 3.33787 0.00012 -0.00014 0.00014 -0.00000 3.33786 R4 2.82328 -0.00000 0.00001 -0.00001 0.00001 2.82329 R5 2.82328 -0.00000 0.00001 -0.00001 0.00001 2.82329 R6 2.86101 0.00000 -0.00002 0.00001 -0.00002 2.86099 A1 1.89345 0.00001 0.00007 0.00043 0.00050 1.89395 A2 2.00445 0.00001 0.00019 0.00041 0.00060 2.00506 A3 2.00445 0.00001 0.00019 0.00041 0.00060 2.00506 A4 1.94510 -0.00564 -0.00003 0.00009 0.00007 1.94517 A5 1.94510 -0.00564 -0.00003 0.00009 0.00007 1.94517 A6 1.70728 0.04567 0.00000 0.00000 0.00000 1.70728 A7 1.93280 -0.00197 -0.00000 0.00009 0.00009 1.93289 A8 1.96192 -0.01418 0.00003 -0.00014 -0.00012 1.96180 A9 1.96192 -0.01418 0.00003 -0.00014 -0.00012 1.96180 D1 0.95029 0.00546 -0.00020 -0.00082 -0.00102 0.94927 D2 3.11923 -0.00550 -0.00024 -0.00057 -0.00081 3.11842 D3 -1.10683 -0.00002 -0.00022 -0.00070 -0.00092 -1.10775 D4 -3.11923 0.00550 0.00024 0.00057 0.00081 -3.11842 D5 -0.95029 -0.00546 0.00020 0.00082 0.00102 -0.94927 D6 1.10683 0.00002 0.00022 0.00070 0.00092 1.10775 Item Value Threshold Converged? Maximum Force 0.000121 0.000450 YES RMS Force 0.000031 0.000300 YES Maximum Displacement 0.000844 0.001800 YES RMS Displacement 0.000400 0.001200 YES Predicted change in Energy=-6.138005D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0197 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0197 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7663 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.494 -DE/DX = 0.0 ! ! R5 R(4,6) 1.494 -DE/DX = 0.0 ! ! R6 R(4,7) 1.514 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.4868 -DE/DX = 0.0 ! ! A2 A(2,1,4) 114.8466 -DE/DX = 0.0 ! ! A3 A(3,1,4) 114.8466 -DE/DX = 0.0 ! ! A4 A(1,4,5) 111.446 -DE/DX = -0.0056 ! ! A5 A(1,4,6) 111.446 -DE/DX = -0.0056 ! ! A6 A(1,4,7) 97.82 -DE/DX = 0.0457 ! ! A7 A(5,4,6) 110.7415 -DE/DX = -0.002 ! ! A8 A(5,4,7) 112.4097 -DE/DX = -0.0142 ! ! A9 A(6,4,7) 112.4097 -DE/DX = -0.0142 ! ! D1 D(2,1,4,5) 54.4476 -DE/DX = 0.0055 ! ! D2 D(2,1,4,6) 178.7188 -DE/DX = -0.0055 ! ! D3 D(2,1,4,7) -63.4168 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -178.7188 -DE/DX = 0.0055 ! ! D5 D(3,1,4,6) -54.4476 -DE/DX = -0.0055 ! ! D6 D(3,1,4,7) 63.4168 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01387432 RMS(Int)= 0.00359342 Iteration 2 RMS(Cart)= 0.00014627 RMS(Int)= 0.00359027 Iteration 3 RMS(Cart)= 0.00000077 RMS(Int)= 0.00359027 Iteration 1 RMS(Cart)= 0.00307280 RMS(Int)= 0.00080411 Iteration 2 RMS(Cart)= 0.00068720 RMS(Int)= 0.00087139 Iteration 3 RMS(Cart)= 0.00015425 RMS(Int)= 0.00090304 Iteration 4 RMS(Cart)= 0.00003465 RMS(Int)= 0.00091086 Iteration 5 RMS(Cart)= 0.00000779 RMS(Int)= 0.00091265 Iteration 6 RMS(Cart)= 0.00000175 RMS(Int)= 0.00091305 Iteration 7 RMS(Cart)= 0.00000039 RMS(Int)= 0.00091314 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.029485 0.800987 -0.000000 2 1 0 -1.601075 0.968640 -0.827670 3 1 0 -1.601075 0.968640 0.827670 4 14 0 -0.153548 -0.732842 0.000000 5 1 0 0.684021 -0.876444 -1.228803 6 1 0 0.684021 -0.876444 1.228803 7 1 0 -1.320943 -1.696872 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019736 0.000000 3 H 1.019736 1.655341 0.000000 4 Si 1.766323 2.382313 2.382313 0.000000 5 H 2.694408 2.964271 3.585398 1.494021 0.000000 6 H 2.694408 3.585398 2.964271 1.494021 2.457605 7 H 2.514806 2.805078 2.805078 1.513990 2.490569 6 7 6 H 0.000000 7 H 2.490569 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.038693 1.173375 0.000000 2 1 0 0.374521 1.602417 0.827670 3 1 0 0.374521 1.602417 -0.827670 4 14 0 -0.038693 -0.592948 -0.000000 5 1 0 -0.694802 -1.133007 1.228803 6 1 0 -0.694802 -1.133007 -1.228803 7 1 0 1.453114 -0.851164 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.9032710 12.3137014 12.0031012 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8676105015 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8575042960 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.26D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999998 -0.000000 -0.000000 0.001939 Ang= 0.22 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.91D-04 Max=2.58D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.13D-05 Max=9.49D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.64D-05 Max=3.61D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.30D-06 Max=6.79D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.24D-06 Max=3.69D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.76D-07 Max=6.89D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.84D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.52D-08 Max=4.21D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=7.48D-09 Max=6.25D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.15D-09 Max=8.82D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 4.01D-04 DF= -7.90D-12 DXR= 4.01D-04 DFR= 1.61D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=9.80D-07 Max=1.02D-05 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.49D-07 Max=2.62D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.28D-07 Max=9.76D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.03D-08 Max=3.38D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.11D-09 Max=3.98D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.38D-09 Max=1.74D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.49D-10 Max=4.37D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=5.52D-11 Max=3.67D-10 NDo= 1 Linear equations converged to 1.936D-10 1.936D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.084669244 a.u. after 3 cycles Convg = 0.1288D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.014053189 0.006487196 0.000000000 2 1 -0.000071310 0.000158076 -0.000097311 3 1 -0.000071310 0.000158076 0.000097311 4 14 -0.025654354 0.006670986 -0.000000000 5 1 0.000056348 0.000123256 -0.000088578 6 1 0.000056348 0.000123256 0.000088578 7 1 0.011631088 -0.013720845 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.025654354 RMS 0.007764078 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.039992145 RMS 0.009914537 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 13 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01041 0.02387 0.05607 0.08290 0.09250 Eigenvalues --- 0.13184 0.16000 0.16000 0.16468 0.16944 Eigenvalues --- 0.17254 0.36536 0.44404 0.463971000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.52753972D-05 EMin= 1.04112424D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00518961 RMS(Int)= 0.00007939 Iteration 2 RMS(Cart)= 0.00005932 RMS(Int)= 0.00005734 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00005734 Iteration 1 RMS(Cart)= 0.00000011 RMS(Int)= 0.00000003 ClnCor: largest displacement from symmetrization is 9.59D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92702 0.00014 0.00000 -0.00036 -0.00036 1.92666 R2 1.92702 0.00014 0.00000 -0.00036 -0.00036 1.92666 R3 3.33787 -0.00099 0.00000 -0.00674 -0.00674 3.33113 R4 2.82329 0.00009 0.00000 0.00076 0.00076 2.82405 R5 2.82329 0.00009 0.00000 0.00076 0.00076 2.82405 R6 2.86103 -0.00023 0.00000 -0.00132 -0.00132 2.85970 A1 1.89395 -0.00012 0.00000 0.00346 0.00328 1.89723 A2 2.00506 0.00016 0.00000 0.00977 0.00965 2.01471 A3 2.00506 0.00016 0.00000 0.00977 0.00965 2.01471 A4 1.94065 -0.00549 0.00000 -0.00144 -0.00145 1.93921 A5 1.94065 -0.00549 0.00000 -0.00144 -0.00145 1.93921 A6 1.74219 0.03999 0.00000 0.00000 0.00000 1.74219 A7 1.93152 -0.00143 0.00000 0.00012 0.00012 1.93163 A8 1.95096 -0.01235 0.00000 0.00135 0.00135 1.95231 A9 1.95096 -0.01235 0.00000 0.00135 0.00135 1.95231 D1 0.95348 0.00485 0.00000 -0.01060 -0.01064 0.94284 D2 3.11421 -0.00497 0.00000 -0.01254 -0.01258 3.10163 D3 -1.10775 -0.00006 0.00000 -0.01157 -0.01161 -1.11936 D4 -3.11421 0.00497 0.00000 0.01254 0.01258 -3.10163 D5 -0.95348 -0.00485 0.00000 0.01060 0.01064 -0.94284 D6 1.10775 0.00006 0.00000 0.01157 0.01161 1.11936 Item Value Threshold Converged? Maximum Force 0.000991 0.000450 NO RMS Force 0.000260 0.000300 YES Maximum Displacement 0.013801 0.001800 NO RMS Displacement 0.005181 0.001200 NO Predicted change in Energy=-7.651913D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.032601 0.793684 -0.000000 2 1 0 -1.598959 0.973439 -0.828490 3 1 0 -1.598959 0.973439 0.828490 4 14 0 -0.154958 -0.735059 0.000000 5 1 0 0.683507 -0.874273 -1.229183 6 1 0 0.683507 -0.874273 1.229183 7 1 0 -1.319623 -1.701291 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019543 0.000000 3 H 1.019543 1.656980 0.000000 4 Si 1.762757 2.385476 2.385476 0.000000 5 H 2.690353 2.963823 3.585764 1.494422 0.000000 6 H 2.690353 3.585764 2.963823 1.494422 2.458366 7 H 2.511430 2.814002 2.814002 1.513291 2.491461 6 7 6 H 0.000000 7 H 2.491461 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.037645 1.170215 0.000000 2 1 0 0.364029 1.608085 0.828490 3 1 0 0.364029 1.608085 -0.828490 4 14 0 -0.037645 -0.592541 -0.000000 5 1 0 -0.695489 -1.130731 1.229183 6 1 0 -0.695489 -1.130731 -1.229183 7 1 0 1.453473 -0.850638 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 64.9708473 12.3459229 12.0287497 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9241583679 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9140536173 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.26D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000663 Ang= -0.08 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.39D-04 Max=2.46D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=6.83D-05 Max=6.13D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.44D-05 Max=3.85D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.05D-05 Max=1.16D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.30D-06 Max=2.94D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.52D-07 Max=4.26D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.98D-07 Max=1.55D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.57D-08 Max=4.99D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=7.63D-09 Max=5.88D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=9.87D-10 Max=7.85D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.06D-04 DF= -5.12D-13 DXR= 1.06D-04 DFR= 1.28D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.96D-07 Max=4.29D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.13D-07 Max=3.04D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.03D-07 Max=7.88D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.23D-08 Max=2.96D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.80D-09 Max=5.19D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.74D-10 Max=7.15D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.74D-10 Max=1.57D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.90D-11 Max=4.47D-10 NDo= 1 Linear equations converged to 1.112D-10 1.112D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.084676966 a.u. after 3 cycles Convg = 0.8966D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.013439450 0.007823887 0.000000000 2 1 0.000013562 0.000014235 -0.000026364 3 1 0.000013562 0.000014235 0.000026364 4 14 -0.025056700 0.006170786 -0.000000000 5 1 -0.000009460 -0.000011530 -0.000002217 6 1 -0.000009460 -0.000011530 0.000002217 7 1 0.011609047 -0.014000083 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.025056700 RMS 0.007679669 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.040350464 RMS 0.009995426 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 13 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -7.72D-06 DEPred=-7.65D-06 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 3.27D-02 DXNew= 3.1674D-01 9.7962D-02 Trust test= 1.01D+00 RLast= 3.27D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00969 0.02387 0.05628 0.08289 0.09254 Eigenvalues --- 0.13304 0.16000 0.16000 0.16461 0.16944 Eigenvalues --- 0.17253 0.38251 0.44404 0.463461000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-8.03952752D-08 EMin= 9.69181240D-03 Quartic linear search produced a step of 0.01709. Iteration 1 RMS(Cart)= 0.00033662 RMS(Int)= 0.00000120 Iteration 2 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000118 Iteration 1 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 7.63D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92666 0.00002 -0.00001 -0.00000 -0.00001 1.92665 R2 1.92666 0.00002 -0.00001 -0.00000 -0.00001 1.92665 R3 3.33113 0.00011 -0.00012 0.00010 -0.00002 3.33111 R4 2.82405 -0.00000 0.00001 -0.00001 0.00001 2.82406 R5 2.82405 -0.00000 0.00001 -0.00001 0.00001 2.82406 R6 2.85970 0.00000 -0.00002 0.00001 -0.00001 2.85969 A1 1.89723 0.00001 0.00006 0.00037 0.00042 1.89765 A2 2.01471 0.00000 0.00016 0.00033 0.00050 2.01520 A3 2.01471 0.00000 0.00016 0.00033 0.00050 2.01520 A4 1.93921 -0.00530 -0.00002 0.00010 0.00008 1.93928 A5 1.93921 -0.00530 -0.00002 0.00010 0.00008 1.93928 A6 1.74219 0.04035 0.00000 0.00000 0.00000 1.74219 A7 1.93163 -0.00160 0.00000 0.00007 0.00007 1.93171 A8 1.95231 -0.01258 0.00002 -0.00014 -0.00012 1.95220 A9 1.95231 -0.01258 0.00002 -0.00014 -0.00012 1.95220 D1 0.94284 0.00484 -0.00018 -0.00072 -0.00090 0.94194 D2 3.10163 -0.00487 -0.00021 -0.00048 -0.00069 3.10093 D3 -1.11936 -0.00001 -0.00020 -0.00060 -0.00080 -1.12016 D4 -3.10163 0.00487 0.00021 0.00048 0.00069 -3.10093 D5 -0.94284 -0.00484 0.00018 0.00072 0.00090 -0.94194 D6 1.11936 0.00001 0.00020 0.00060 0.00080 1.12016 Item Value Threshold Converged? Maximum Force 0.000105 0.000450 YES RMS Force 0.000027 0.000300 YES Maximum Displacement 0.000699 0.001800 YES RMS Displacement 0.000337 0.001200 YES Predicted change in Energy=-4.438402D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0195 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0195 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7628 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4944 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4944 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5133 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.7033 -DE/DX = 0.0 ! ! A2 A(2,1,4) 115.4344 -DE/DX = 0.0 ! ! A3 A(3,1,4) 115.4344 -DE/DX = 0.0 ! ! A4 A(1,4,5) 111.1083 -DE/DX = -0.0053 ! ! A5 A(1,4,6) 111.1083 -DE/DX = -0.0053 ! ! A6 A(1,4,7) 99.82 -DE/DX = 0.0404 ! ! A7 A(5,4,6) 110.6745 -DE/DX = -0.0016 ! ! A8 A(5,4,7) 111.8593 -DE/DX = -0.0126 ! ! A9 A(6,4,7) 111.8593 -DE/DX = -0.0126 ! ! D1 D(2,1,4,5) 54.0205 -DE/DX = 0.0048 ! ! D2 D(2,1,4,6) 177.7102 -DE/DX = -0.0049 ! ! D3 D(2,1,4,7) -64.1346 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -177.7102 -DE/DX = 0.0049 ! ! D5 D(3,1,4,6) -54.0205 -DE/DX = -0.0048 ! ! D6 D(3,1,4,7) 64.1346 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01373665 RMS(Int)= 0.00362038 Iteration 2 RMS(Cart)= 0.00014351 RMS(Int)= 0.00361738 Iteration 3 RMS(Cart)= 0.00000071 RMS(Int)= 0.00361738 Iteration 1 RMS(Cart)= 0.00308798 RMS(Int)= 0.00082174 Iteration 2 RMS(Cart)= 0.00070046 RMS(Int)= 0.00089113 Iteration 3 RMS(Cart)= 0.00015943 RMS(Int)= 0.00092427 Iteration 4 RMS(Cart)= 0.00003632 RMS(Int)= 0.00093258 Iteration 5 RMS(Cart)= 0.00000827 RMS(Int)= 0.00093451 Iteration 6 RMS(Cart)= 0.00000188 RMS(Int)= 0.00093495 Iteration 7 RMS(Cart)= 0.00000043 RMS(Int)= 0.00093505 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.030552 0.799844 -0.000000 2 1 0 -1.595079 0.984704 -0.828611 3 1 0 -1.595079 0.984704 0.828611 4 14 0 -0.164659 -0.735576 0.000000 5 1 0 0.674934 -0.872416 -1.228685 6 1 0 0.674934 -0.872416 1.228685 7 1 0 -1.302584 -1.733179 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019540 0.000000 3 H 1.019540 1.657223 0.000000 4 Si 1.762749 2.385804 2.385804 0.000000 5 H 2.686038 2.960053 3.582502 1.494426 0.000000 6 H 2.686038 3.582502 2.960053 1.494426 2.457369 7 H 2.547588 2.856402 2.856402 1.513302 2.482168 6 7 6 H 0.000000 7 H 2.482168 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.036725 1.171665 0.000000 2 1 0 0.364193 1.609990 0.828611 3 1 0 0.364193 1.609990 -0.828611 4 14 0 -0.036725 -0.591084 -0.000000 5 1 0 -0.700824 -1.122699 1.228685 6 1 0 -0.700824 -1.122699 -1.228685 7 1 0 1.444489 -0.901065 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.0502033 12.3305417 12.0126162 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9036453568 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8935604282 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999998 0.000000 -0.000000 0.001980 Ang= 0.23 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.82D-04 Max=2.62D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=8.75D-05 Max=9.12D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.50D-05 Max=3.44D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.97D-06 Max=6.57D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.15D-06 Max=3.50D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.52D-07 Max=6.33D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.61D-07 Max=1.40D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.10D-08 Max=4.00D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=6.94D-09 Max=5.63D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.06D-09 Max=8.29D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 3.55D-04 DF= -5.91D-12 DXR= 3.55D-04 DFR= 1.25D-07 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=8.28D-07 Max=8.70D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.04D-07 Max=2.41D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.18D-07 Max=8.94D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.69D-08 Max=2.93D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.39D-09 Max=3.76D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.21D-10 Max=1.17D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.70D-10 Max=2.82D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.53D-11 Max=3.40D-10 NDo= 1 Linear equations converged to 1.651D-10 1.651D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.086372026 a.u. after 3 cycles Convg = 0.1053D-09 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.012394631 0.005600027 0.000000000 2 1 -0.000075011 0.000147524 -0.000092696 3 1 -0.000075011 0.000147524 0.000092696 4 14 -0.022898916 0.005546477 -0.000000000 5 1 0.000056262 0.000124200 -0.000091440 6 1 0.000056262 0.000124200 0.000091440 7 1 0.010541782 -0.011689953 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.022898916 RMS 0.006859199 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.034857182 RMS 0.008659298 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 14 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00969 0.02387 0.05637 0.08077 0.09108 Eigenvalues --- 0.13308 0.16000 0.16000 0.16453 0.16944 Eigenvalues --- 0.17253 0.38281 0.44404 0.463461000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.24015392D-05 EMin= 9.69023021D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00479732 RMS(Int)= 0.00006718 Iteration 2 RMS(Cart)= 0.00005032 RMS(Int)= 0.00004855 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00004855 Iteration 1 RMS(Cart)= 0.00000012 RMS(Int)= 0.00000003 ClnCor: largest displacement from symmetrization is 7.29D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92665 0.00014 0.00000 -0.00029 -0.00029 1.92636 R2 1.92665 0.00014 0.00000 -0.00029 -0.00029 1.92636 R3 3.33111 -0.00088 0.00000 -0.00583 -0.00583 3.32528 R4 2.82406 0.00010 0.00000 0.00075 0.00075 2.82481 R5 2.82406 0.00010 0.00000 0.00075 0.00075 2.82481 R6 2.85973 -0.00022 0.00000 -0.00131 -0.00131 2.85841 A1 1.89765 -0.00012 0.00000 0.00299 0.00284 1.90049 A2 2.01521 0.00014 0.00000 0.00879 0.00869 2.02389 A3 2.01521 0.00014 0.00000 0.00879 0.00869 2.02389 A4 1.93449 -0.00508 0.00000 -0.00148 -0.00148 1.93301 A5 1.93449 -0.00508 0.00000 -0.00148 -0.00148 1.93301 A6 1.77709 0.03486 0.00000 0.00000 0.00000 1.77709 A7 1.93045 -0.00111 0.00000 0.00024 0.00024 1.93069 A8 1.94131 -0.01078 0.00000 0.00133 0.00133 1.94264 A9 1.94131 -0.01078 0.00000 0.00133 0.00133 1.94264 D1 0.94616 0.00424 0.00000 -0.00997 -0.01001 0.93615 D2 3.09671 -0.00434 0.00000 -0.01175 -0.01178 3.08493 D3 -1.12016 -0.00005 0.00000 -0.01086 -0.01090 -1.13105 D4 -3.09671 0.00434 0.00000 0.01175 0.01178 -3.08493 D5 -0.94616 -0.00424 0.00000 0.00997 0.01001 -0.93615 D6 1.12016 0.00005 0.00000 0.01086 0.01090 1.13105 Item Value Threshold Converged? Maximum Force 0.000880 0.000450 NO RMS Force 0.000237 0.000300 YES Maximum Displacement 0.012563 0.001800 NO RMS Displacement 0.004791 0.001200 NO Predicted change in Energy=-6.213195D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.033545 0.793196 -0.000000 2 1 0 -1.593006 0.989060 -0.829328 3 1 0 -1.593006 0.989060 0.829328 4 14 0 -0.165978 -0.737734 0.000000 5 1 0 0.674376 -0.870336 -1.229113 6 1 0 0.674376 -0.870336 1.229113 7 1 0 -1.301302 -1.737245 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019384 0.000000 3 H 1.019384 1.658656 0.000000 4 Si 1.759664 2.388726 2.388726 0.000000 5 H 2.682360 2.959426 3.582674 1.494823 0.000000 6 H 2.682360 3.582674 2.959426 1.494823 2.458226 7 H 2.544568 2.864545 2.864545 1.512608 2.483053 6 7 6 H 0.000000 7 H 2.483053 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.035746 1.168886 0.000000 2 1 0 0.354425 1.615121 0.829328 3 1 0 0.354425 1.615121 -0.829328 4 14 0 -0.035746 -0.590778 -0.000000 5 1 0 -0.701488 -1.120464 1.229113 6 1 0 -0.701488 -1.120464 -1.229113 7 1 0 1.444789 -0.900618 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.1081583 12.3584405 12.0345211 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9523530089 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9422692891 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000609 Ang= -0.07 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.17D-04 Max=2.22D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=6.00D-05 Max=5.37D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.98D-05 Max=3.66D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.48D-06 Max=1.05D-04 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.02D-06 Max=2.66D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.92D-07 Max=3.77D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.76D-07 Max=1.37D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.00D-08 Max=4.39D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=6.58D-09 Max=5.02D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=8.91D-10 Max=6.61D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 9.77D-05 DF= -2.84D-13 DXR= 9.77D-05 DFR= 8.47D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.23D-07 Max=3.50D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.60D-07 Max=2.48D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=8.63D-08 Max=6.74D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.73D-08 Max=2.56D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.69D-09 Max=4.25D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.22D-10 Max=5.80D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.29D-10 Max=1.20D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.72D-11 Max=3.42D-10 NDo= 1 Linear equations converged to 9.123D-11 9.123D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.086378269 a.u. after 3 cycles Convg = 0.6935D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.011829741 0.006780968 0.000000000 2 1 0.000009108 0.000009771 -0.000022062 3 1 0.000009108 0.000009771 0.000022062 4 14 -0.022346773 0.005169131 -0.000000000 5 1 -0.000007154 -0.000011070 -0.000001091 6 1 -0.000007154 -0.000011070 0.000001091 7 1 0.010513124 -0.011947501 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.022346773 RMS 0.006779847 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.035149687 RMS 0.008724725 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 14 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -6.24D-06 DEPred=-6.21D-06 R= 1.00D+00 TightC=F SS= 1.41D+00 RLast= 3.03D-02 DXNew= 3.1674D-01 9.0968D-02 Trust test= 1.00D+00 RLast= 3.03D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00916 0.02387 0.05660 0.08095 0.09112 Eigenvalues --- 0.13412 0.16000 0.16000 0.16448 0.16944 Eigenvalues --- 0.17254 0.39642 0.44404 0.462931000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.35619914D-08 EMin= 9.15724940D-03 Quartic linear search produced a step of 0.01116. Iteration 1 RMS(Cart)= 0.00023729 RMS(Int)= 0.00000065 Iteration 2 RMS(Cart)= 0.00000008 RMS(Int)= 0.00000064 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 6.45D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92636 0.00001 -0.00000 0.00001 0.00001 1.92636 R2 1.92636 0.00001 -0.00000 0.00001 0.00001 1.92636 R3 3.32528 0.00008 -0.00007 0.00003 -0.00004 3.32525 R4 2.82481 -0.00000 0.00001 -0.00000 0.00001 2.82481 R5 2.82481 -0.00000 0.00001 -0.00000 0.00001 2.82481 R6 2.85841 0.00000 -0.00001 0.00001 -0.00000 2.85841 A1 1.90049 0.00001 0.00003 0.00027 0.00030 1.90079 A2 2.02389 0.00000 0.00010 0.00024 0.00034 2.02423 A3 2.02389 0.00000 0.00010 0.00024 0.00034 2.02423 A4 1.93301 -0.00489 -0.00002 0.00012 0.00010 1.93312 A5 1.93301 -0.00489 -0.00002 0.00012 0.00010 1.93312 A6 1.77709 0.03515 0.00000 0.00000 0.00000 1.77709 A7 1.93069 -0.00128 0.00000 0.00003 0.00003 1.93073 A8 1.94264 -0.01100 0.00001 -0.00014 -0.00012 1.94252 A9 1.94264 -0.01100 0.00001 -0.00014 -0.00012 1.94252 D1 0.93615 0.00423 -0.00011 -0.00056 -0.00067 0.93548 D2 3.08493 -0.00425 -0.00013 -0.00035 -0.00048 3.08445 D3 -1.13105 -0.00001 -0.00012 -0.00045 -0.00057 -1.13163 D4 -3.08493 0.00425 0.00013 0.00035 0.00048 -3.08445 D5 -0.93615 -0.00423 0.00011 0.00056 0.00067 -0.93548 D6 1.13105 0.00001 0.00012 0.00045 0.00057 1.13163 Item Value Threshold Converged? Maximum Force 0.000075 0.000450 YES RMS Force 0.000020 0.000300 YES Maximum Displacement 0.000486 0.001800 YES RMS Displacement 0.000237 0.001200 YES Predicted change in Energy=-2.470694D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0194 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0194 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7597 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.4948 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4948 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5126 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.89 -DE/DX = 0.0 ! ! A2 A(2,1,4) 115.9604 -DE/DX = 0.0 ! ! A3 A(3,1,4) 115.9604 -DE/DX = 0.0 ! ! A4 A(1,4,5) 110.7534 -DE/DX = -0.0049 ! ! A5 A(1,4,6) 110.7534 -DE/DX = -0.0049 ! ! A6 A(1,4,7) 101.82 -DE/DX = 0.0351 ! ! A7 A(5,4,6) 110.6206 -DE/DX = -0.0013 ! ! A8 A(5,4,7) 111.3053 -DE/DX = -0.011 ! ! A9 A(6,4,7) 111.3053 -DE/DX = -0.011 ! ! D1 D(2,1,4,5) 53.6374 -DE/DX = 0.0042 ! ! D2 D(2,1,4,6) 176.7535 -DE/DX = -0.0042 ! ! D3 D(2,1,4,7) -64.8046 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -176.7535 -DE/DX = 0.0042 ! ! D5 D(3,1,4,6) -53.6374 -DE/DX = -0.0042 ! ! D6 D(3,1,4,7) 64.8046 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01360630 RMS(Int)= 0.00364421 Iteration 2 RMS(Cart)= 0.00014098 RMS(Int)= 0.00364134 Iteration 3 RMS(Cart)= 0.00000066 RMS(Int)= 0.00364134 Iteration 1 RMS(Cart)= 0.00309896 RMS(Int)= 0.00083750 Iteration 2 RMS(Cart)= 0.00071175 RMS(Int)= 0.00090881 Iteration 3 RMS(Cart)= 0.00016398 RMS(Int)= 0.00094330 Iteration 4 RMS(Cart)= 0.00003781 RMS(Int)= 0.00095206 Iteration 5 RMS(Cart)= 0.00000872 RMS(Int)= 0.00095412 Iteration 6 RMS(Cart)= 0.00000201 RMS(Int)= 0.00095460 Iteration 7 RMS(Cart)= 0.00000046 RMS(Int)= 0.00095471 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.031435 0.799257 -0.000000 2 1 0 -1.589024 1.000032 -0.829418 3 1 0 -1.589024 1.000032 0.829418 4 14 0 -0.175903 -0.738411 0.000000 5 1 0 0.665536 -0.868476 -1.228646 6 1 0 0.665536 -0.868476 1.228646 7 1 0 -1.283771 -1.768294 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019387 0.000000 3 H 1.019387 1.658837 0.000000 4 Si 1.759647 2.388939 2.388939 0.000000 5 H 2.677800 2.955291 3.579105 1.494827 0.000000 6 H 2.677800 3.579105 2.955291 1.494827 2.457292 7 H 2.579921 2.905984 2.905984 1.512624 2.473669 6 7 6 H 0.000000 7 H 2.473669 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.034769 1.170298 -0.000000 2 1 0 0.354865 1.616843 0.829418 3 1 0 0.354865 1.616843 -0.829418 4 14 0 -0.034769 -0.589349 0.000000 5 1 0 -0.706823 -1.112109 1.228646 6 1 0 -0.706823 -1.112109 -1.228646 7 1 0 1.434066 -0.950673 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.2294492 12.3437863 12.0176489 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9339392516 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9238739869 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999998 0.000000 0.000000 0.002026 Ang= 0.23 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.75D-04 Max=2.64D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=8.34D-05 Max=8.71D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.35D-05 Max=3.45D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.60D-06 Max=6.30D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.04D-06 Max=3.31D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.27D-07 Max=5.90D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.37D-07 Max=1.11D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.65D-08 Max=3.67D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=6.29D-09 Max=4.80D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=9.65D-10 Max=7.42D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 3.11D-04 DF= -4.43D-12 DXR= 3.11D-04 DFR= 9.74D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=7.05D-07 Max=7.42D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.74D-07 Max=2.22D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.13D-07 Max=8.25D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.39D-08 Max=2.60D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.02D-09 Max=3.64D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.62D-10 Max=5.18D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.57D-10 Max=1.26D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.22D-11 Max=2.12D-10 NDo= 1 Linear equations converged to 1.423D-10 1.423D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.087848468 a.u. after 3 cycles Convg = 0.7695D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.010751769 0.004720541 0.000000000 2 1 -0.000079662 0.000136905 -0.000087550 3 1 -0.000079662 0.000136905 0.000087550 4 14 -0.020062782 0.004522901 -0.000000000 5 1 0.000056599 0.000123820 -0.000094333 6 1 0.000056599 0.000123820 0.000094333 7 1 0.009357138 -0.009764892 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.020062782 RMS 0.005951732 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.029844874 RMS 0.007427879 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 15 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00915 0.02387 0.05670 0.07892 0.08955 Eigenvalues --- 0.13415 0.16000 0.16000 0.16441 0.16944 Eigenvalues --- 0.17255 0.39674 0.44404 0.462931000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-9.89109156D-06 EMin= 9.15482486D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00432729 RMS(Int)= 0.00005411 Iteration 2 RMS(Cart)= 0.00004071 RMS(Int)= 0.00003909 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003909 Iteration 1 RMS(Cart)= 0.00000013 RMS(Int)= 0.00000003 ClnCor: largest displacement from symmetrization is 7.71D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92636 0.00014 0.00000 -0.00022 -0.00022 1.92615 R2 1.92636 0.00014 0.00000 -0.00022 -0.00022 1.92615 R3 3.32525 -0.00079 0.00000 -0.00502 -0.00502 3.32024 R4 2.82481 0.00010 0.00000 0.00074 0.00074 2.82556 R5 2.82481 0.00010 0.00000 0.00074 0.00074 2.82556 R6 2.85845 -0.00020 0.00000 -0.00125 -0.00125 2.85720 A1 1.90079 -0.00012 0.00000 0.00249 0.00237 1.90315 A2 2.02423 0.00013 0.00000 0.00773 0.00765 2.03187 A3 2.02423 0.00013 0.00000 0.00773 0.00765 2.03187 A4 1.92806 -0.00461 0.00000 -0.00147 -0.00147 1.92659 A5 1.92806 -0.00461 0.00000 -0.00147 -0.00147 1.92659 A6 1.81200 0.02984 0.00000 0.00000 0.00000 1.81200 A7 1.92959 -0.00083 0.00000 0.00031 0.00031 1.92990 A8 1.93161 -0.00922 0.00000 0.00130 0.00130 1.93291 A9 1.93161 -0.00922 0.00000 0.00130 0.00130 1.93291 D1 0.93970 0.00363 0.00000 -0.00910 -0.00913 0.93057 D2 3.08024 -0.00372 0.00000 -0.01072 -0.01074 3.06949 D3 -1.13163 -0.00004 0.00000 -0.00991 -0.00994 -1.14156 D4 -3.08024 0.00372 0.00000 0.01072 0.01074 -3.06949 D5 -0.93970 -0.00363 0.00000 0.00910 0.00913 -0.93057 D6 1.13163 0.00004 0.00000 0.00991 0.00994 1.14156 Item Value Threshold Converged? Maximum Force 0.000786 0.000450 NO RMS Force 0.000217 0.000300 YES Maximum Displacement 0.011219 0.001800 NO RMS Displacement 0.004323 0.001200 NO Predicted change in Energy=-4.952852D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.034201 0.793321 -0.000000 2 1 0 -1.587050 1.003874 -0.830026 3 1 0 -1.587050 1.003874 0.830026 4 14 0 -0.177117 -0.740443 0.000000 5 1 0 0.664962 -0.866517 -1.229102 6 1 0 0.664962 -0.866517 1.229102 7 1 0 -1.282592 -1.771927 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019273 0.000000 3 H 1.019273 1.660052 0.000000 4 Si 1.756993 2.391547 2.391547 0.000000 5 H 2.674492 2.954519 3.579096 1.495220 0.000000 6 H 2.674492 3.579096 2.954519 1.495220 2.458205 7 H 2.577245 2.913195 2.913195 1.511964 2.474556 6 7 6 H 0.000000 7 H 2.474556 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.033877 1.167874 -0.000000 2 1 0 0.346021 1.621363 0.830026 3 1 0 0.346021 1.621363 -0.830026 4 14 0 -0.033877 -0.589118 0.000000 5 1 0 -0.707468 -1.109952 1.229102 6 1 0 -0.707468 -1.109952 -1.229102 7 1 0 1.434317 -0.950285 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.2770332 12.3678988 12.0364206 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9756780968 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9656137178 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000543 Ang= -0.06 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=1.92D-04 Max=1.96D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=5.19D-05 Max=4.64D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.50D-05 Max=3.41D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.44D-06 Max=9.33D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.70D-06 Max=2.34D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.27D-07 Max=3.80D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.54D-07 Max=1.20D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.39D-08 Max=4.17D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.61D-09 Max=4.26D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=7.89D-10 Max=5.48D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 8.96D-05 DF= -2.27D-13 DXR= 8.96D-05 DFR= 8.49D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.51D-07 Max=2.73D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.06D-07 Max=2.06D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.92D-08 Max=5.49D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.20D-08 Max=2.10D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.55D-09 Max=3.29D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.83D-10 Max=4.54D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=9.10D-11 Max=8.65D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=2.70D-11 Max=2.44D-10 NDo= 1 Linear equations converged to 7.152D-11 7.152D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.087853419 a.u. after 3 cycles Convg = 0.5091D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.010228161 0.005763225 0.000000000 2 1 0.000004891 0.000005680 -0.000016592 3 1 0.000004891 0.000005680 0.000016592 4 14 -0.019553888 0.004240928 -0.000000000 5 1 -0.000005321 -0.000008666 -0.000000889 6 1 -0.000005321 -0.000008666 0.000000889 7 1 0.009326587 -0.009998182 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.019553888 RMS 0.005876182 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.030078127 RMS 0.007479434 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 15 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -4.95D-06 DEPred=-4.95D-06 R= 9.99D-01 TightC=F SS= 1.41D+00 RLast= 2.74D-02 DXNew= 3.1674D-01 8.2339D-02 Trust test= 9.99D-01 RLast= 2.74D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00883 0.02387 0.05693 0.07915 0.08960 Eigenvalues --- 0.13499 0.16000 0.16000 0.16436 0.16944 Eigenvalues --- 0.17255 0.40603 0.44404 0.462441000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.76714172D-08 EMin= 8.82859485D-03 Quartic linear search produced a step of 0.00342. Iteration 1 RMS(Cart)= 0.00013525 RMS(Int)= 0.00000017 Iteration 2 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000016 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 4.81D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92615 0.00001 -0.00000 0.00001 0.00001 1.92616 R2 1.92615 0.00001 -0.00000 0.00001 0.00001 1.92616 R3 3.32024 0.00005 -0.00002 -0.00001 -0.00002 3.32021 R4 2.82556 -0.00000 0.00000 0.00000 0.00000 2.82556 R5 2.82556 -0.00000 0.00000 0.00000 0.00000 2.82556 R6 2.85720 0.00000 -0.00000 -0.00000 -0.00000 2.85719 A1 1.90315 0.00001 0.00001 0.00017 0.00018 1.90333 A2 2.03187 -0.00000 0.00003 0.00014 0.00017 2.03204 A3 2.03187 -0.00000 0.00003 0.00014 0.00017 2.03204 A4 1.92659 -0.00441 -0.00001 0.00009 0.00009 1.92668 A5 1.92659 -0.00441 -0.00001 0.00009 0.00009 1.92668 A6 1.81200 0.03008 0.00000 0.00000 0.00000 1.81200 A7 1.92990 -0.00099 0.00000 0.00003 0.00003 1.92993 A8 1.93291 -0.00943 0.00000 -0.00011 -0.00010 1.93280 A9 1.93291 -0.00943 0.00000 -0.00011 -0.00010 1.93280 D1 0.93057 0.00361 -0.00003 -0.00037 -0.00040 0.93017 D2 3.06949 -0.00363 -0.00004 -0.00021 -0.00024 3.06925 D3 -1.14156 -0.00001 -0.00003 -0.00029 -0.00032 -1.14189 D4 -3.06949 0.00363 0.00004 0.00021 0.00024 -3.06925 D5 -0.93057 -0.00361 0.00003 0.00037 0.00040 -0.93017 D6 1.14156 0.00001 0.00003 0.00029 0.00032 1.14189 Item Value Threshold Converged? Maximum Force 0.000047 0.000450 YES RMS Force 0.000013 0.000300 YES Maximum Displacement 0.000274 0.001800 YES RMS Displacement 0.000135 0.001200 YES Predicted change in Energy=-1.102708D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0193 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0193 -DE/DX = 0.0 ! ! R3 R(1,4) 1.757 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4952 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4952 -DE/DX = 0.0 ! ! R6 R(4,7) 1.512 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.0426 -DE/DX = 0.0 ! ! A2 A(2,1,4) 116.4178 -DE/DX = 0.0 ! ! A3 A(3,1,4) 116.4178 -DE/DX = 0.0 ! ! A4 A(1,4,5) 110.3853 -DE/DX = -0.0044 ! ! A5 A(1,4,6) 110.3853 -DE/DX = -0.0044 ! ! A6 A(1,4,7) 103.82 -DE/DX = 0.0301 ! ! A7 A(5,4,6) 110.5752 -DE/DX = -0.001 ! ! A8 A(5,4,7) 110.7473 -DE/DX = -0.0094 ! ! A9 A(6,4,7) 110.7473 -DE/DX = -0.0094 ! ! D1 D(2,1,4,5) 53.3175 -DE/DX = 0.0036 ! ! D2 D(2,1,4,6) 175.869 -DE/DX = -0.0036 ! ! D3 D(2,1,4,7) -65.4067 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -175.869 -DE/DX = 0.0036 ! ! D5 D(3,1,4,6) -53.3175 -DE/DX = -0.0036 ! ! D6 D(3,1,4,7) 65.4067 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01348308 RMS(Int)= 0.00366516 Iteration 2 RMS(Cart)= 0.00013865 RMS(Int)= 0.00366240 Iteration 3 RMS(Cart)= 0.00000061 RMS(Int)= 0.00366240 Iteration 1 RMS(Cart)= 0.00310624 RMS(Int)= 0.00085151 Iteration 2 RMS(Cart)= 0.00072121 RMS(Int)= 0.00092452 Iteration 3 RMS(Cart)= 0.00016794 RMS(Int)= 0.00096024 Iteration 4 RMS(Cart)= 0.00003913 RMS(Int)= 0.00096942 Iteration 5 RMS(Cart)= 0.00000912 RMS(Int)= 0.00097160 Iteration 6 RMS(Cart)= 0.00000213 RMS(Int)= 0.00097211 Iteration 7 RMS(Cart)= 0.00000050 RMS(Int)= 0.00097223 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.032003 0.799280 -0.000000 2 1 0 -1.582962 1.014543 -0.830084 3 1 0 -1.582962 1.014543 0.830084 4 14 0 -0.187253 -0.741299 0.000000 5 1 0 0.655853 -0.864631 -1.228678 6 1 0 0.655853 -0.864631 1.228678 7 1 0 -1.264612 -1.802139 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019280 0.000000 3 H 1.019280 1.660168 0.000000 4 Si 1.756982 2.391657 2.391657 0.000000 5 H 2.669665 2.949994 3.575204 1.495222 0.000000 6 H 2.669665 3.575204 2.949994 1.495222 2.457356 7 H 2.611798 2.953656 2.953656 1.511980 2.465108 6 7 6 H 0.000000 7 H 2.465108 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.032845 1.169254 -0.000000 2 1 0 0.346755 1.622902 0.830084 3 1 0 0.346755 1.622902 -0.830084 4 14 0 -0.032845 -0.587728 0.000000 5 1 0 -0.712811 -1.101232 1.228678 6 1 0 -0.712811 -1.101232 -1.228678 7 1 0 1.421865 -0.999918 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.4385745 12.3538731 12.0187622 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9590420293 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9489946512 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 0.999998 0.000000 0.000000 0.002075 Ang= 0.24 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.69D-04 Max=2.64D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=7.89D-05 Max=8.23D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.20D-05 Max=3.46D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.24D-06 Max=6.02D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.91D-06 Max=3.12D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.06D-07 Max=6.03D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.16D-07 Max=9.00D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.17D-08 Max=3.47D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.60D-09 Max=4.28D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=8.57D-10 Max=6.16D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 2.67D-04 DF= -3.18D-12 DXR= 2.67D-04 DFR= 7.19D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=6.08D-07 Max=6.35D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.56D-07 Max=2.30D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.09D-07 Max=8.12D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.14D-08 Max=2.30D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.99D-09 Max=4.06D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=5.54D-10 Max=4.68D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.62D-10 Max=1.12D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.20D-11 Max=4.29D-10 NDo= 1 Linear equations converged to 1.247D-10 1.247D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.089102667 a.u. after 3 cycles Convg = 0.7786D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.009125727 0.003854257 0.000000000 2 1 -0.000086052 0.000127225 -0.000083438 3 1 -0.000086052 0.000127225 0.000083438 4 14 -0.017164168 0.003598686 -0.000000000 5 1 0.000057697 0.000121358 -0.000097261 6 1 0.000057697 0.000121358 0.000097261 7 1 0.008095152 -0.007950111 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.017164168 RMS 0.005045249 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.024963175 RMS 0.006223317 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 16 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00883 0.02387 0.05705 0.07720 0.08793 Eigenvalues --- 0.13501 0.16000 0.16000 0.16430 0.16944 Eigenvalues --- 0.17256 0.40636 0.44404 0.462441000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-7.77512097D-06 EMin= 8.82517235D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00381838 RMS(Int)= 0.00004165 Iteration 2 RMS(Cart)= 0.00003155 RMS(Int)= 0.00003006 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003006 Iteration 1 RMS(Cart)= 0.00000013 RMS(Int)= 0.00000004 ClnCor: largest displacement from symmetrization is 7.49D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92616 0.00014 0.00000 -0.00014 -0.00014 1.92602 R2 1.92616 0.00014 0.00000 -0.00014 -0.00014 1.92602 R3 3.32021 -0.00070 0.00000 -0.00429 -0.00429 3.31593 R4 2.82556 0.00010 0.00000 0.00074 0.00074 2.82630 R5 2.82556 0.00010 0.00000 0.00074 0.00074 2.82630 R6 2.85723 -0.00019 0.00000 -0.00117 -0.00117 2.85606 A1 1.90333 -0.00011 0.00000 0.00198 0.00189 1.90522 A2 2.03205 0.00012 0.00000 0.00668 0.00661 2.03866 A3 2.03205 0.00012 0.00000 0.00668 0.00661 2.03866 A4 1.92136 -0.00407 0.00000 -0.00143 -0.00143 1.91993 A5 1.92136 -0.00407 0.00000 -0.00143 -0.00143 1.91993 A6 1.84691 0.02496 0.00000 0.00000 0.00000 1.84691 A7 1.92890 -0.00060 0.00000 0.00036 0.00035 1.92926 A8 1.92187 -0.00770 0.00000 0.00124 0.00124 1.92312 A9 1.92187 -0.00770 0.00000 0.00124 0.00124 1.92312 D1 0.93437 0.00303 0.00000 -0.00808 -0.00810 0.92627 D2 3.06505 -0.00310 0.00000 -0.00952 -0.00954 3.05550 D3 -1.14188 -0.00004 0.00000 -0.00880 -0.00882 -1.15070 D4 -3.06505 0.00310 0.00000 0.00952 0.00954 -3.05550 D5 -0.93437 -0.00303 0.00000 0.00808 0.00810 -0.92627 D6 1.14188 0.00004 0.00000 0.00880 0.00882 1.15070 Item Value Threshold Converged? Maximum Force 0.000702 0.000450 NO RMS Force 0.000199 0.000300 YES Maximum Displacement 0.009845 0.001800 NO RMS Displacement 0.003815 0.001200 NO Predicted change in Energy=-3.894877D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.034472 0.794070 -0.000000 2 1 0 -1.581135 1.017845 -0.830584 3 1 0 -1.581135 1.017845 0.830584 4 14 0 -0.188352 -0.743166 0.000000 5 1 0 0.655289 -0.862817 -1.229151 6 1 0 0.655289 -0.862817 1.229151 7 1 0 -1.263569 -1.805294 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019208 0.000000 3 H 1.019208 1.661167 0.000000 4 Si 1.754712 2.393924 2.393924 0.000000 5 H 2.666717 2.949125 3.575051 1.495613 0.000000 6 H 2.666717 3.575051 2.949125 1.495613 2.458301 7 H 2.609440 2.959870 2.959870 1.511359 2.465987 6 7 6 H 0.000000 7 H 2.465987 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.032052 1.167157 -0.000000 2 1 0 0.338955 1.626798 0.830584 3 1 0 0.338955 1.626798 -0.830584 4 14 0 -0.032052 -0.587555 0.000000 5 1 0 -0.713438 -1.099179 1.229151 6 1 0 -0.713438 -1.099179 -1.229151 7 1 0 1.422061 -0.999575 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.4759361 12.3746499 12.0348622 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9945825587 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9845357318 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000471 Ang= -0.05 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=1.67D-04 Max=1.70D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=4.42D-05 Max=3.95D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.02D-05 Max=3.13D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.40D-06 Max=8.20D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.36D-06 Max=2.02D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.63D-07 Max=3.04D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.32D-07 Max=1.04D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.80D-08 Max=3.83D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=4.74D-09 Max=3.58D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=6.89D-10 Max=4.61D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 8.12D-05 DF= -2.27D-13 DXR= 8.12D-05 DFR= 1.11D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.88D-07 Max=2.04D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.57D-07 Max=1.64D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.32D-08 Max=4.27D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.70D-08 Max=1.64D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.50D-09 Max=2.42D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=3.64D-10 Max=3.45D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=6.23D-11 Max=5.93D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.86D-11 Max=1.69D-10 NDo= 1 Linear equations converged to 5.372D-11 5.372D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.089106514 a.u. after 3 cycles Convg = 0.3539D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.008638211 0.004775009 0.000000000 2 1 -0.000000106 0.000002213 -0.000011696 3 1 -0.000000106 0.000002213 0.000011696 4 14 -0.016694430 0.003393258 -0.000000000 5 1 -0.000003422 -0.000005741 -0.000001063 6 1 -0.000003422 -0.000005741 0.000001063 7 1 0.008063275 -0.008161212 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.016694430 RMS 0.004972590 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.025145440 RMS 0.006262948 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 16 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -3.85D-06 DEPred=-3.89D-06 R= 9.88D-01 TightC=F SS= 1.41D+00 RLast= 2.43D-02 DXNew= 3.1674D-01 7.2752D-02 Trust test= 9.88D-01 RLast= 2.43D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00869 0.02387 0.05727 0.07749 0.08798 Eigenvalues --- 0.13560 0.16000 0.16000 0.16425 0.16944 Eigenvalues --- 0.17251 0.41101 0.44404 0.462001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda= 0.00000000D+00 EMin= 8.68649334D-03 Quartic linear search produced a step of -0.00411. Iteration 1 RMS(Cart)= 0.00006394 RMS(Int)= 0.00000012 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000012 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.29D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92602 0.00001 0.00000 0.00002 0.00002 1.92604 R2 1.92602 0.00001 0.00000 0.00002 0.00002 1.92604 R3 3.31593 0.00002 0.00002 -0.00003 -0.00001 3.31591 R4 2.82630 -0.00000 -0.00000 0.00000 0.00000 2.82630 R5 2.82630 -0.00000 -0.00000 0.00000 0.00000 2.82630 R6 2.85606 -0.00000 0.00000 -0.00001 -0.00001 2.85605 A1 1.90522 0.00001 -0.00001 0.00009 0.00008 1.90530 A2 2.03866 -0.00000 -0.00003 0.00007 0.00004 2.03870 A3 2.03866 -0.00000 -0.00003 0.00007 0.00004 2.03870 A4 1.91993 -0.00388 0.00001 0.00007 0.00008 1.92000 A5 1.91993 -0.00388 0.00001 0.00007 0.00008 1.92000 A6 1.84691 0.02515 -0.00000 0.00000 0.00000 1.84691 A7 1.92926 -0.00075 -0.00000 0.00003 0.00003 1.92928 A8 1.92312 -0.00789 -0.00001 -0.00008 -0.00009 1.92303 A9 1.92312 -0.00789 -0.00001 -0.00008 -0.00009 1.92303 D1 0.92627 0.00301 0.00003 -0.00021 -0.00017 0.92610 D2 3.05550 -0.00302 0.00004 -0.00008 -0.00004 3.05546 D3 -1.15070 -0.00000 0.00004 -0.00015 -0.00011 -1.15081 D4 -3.05550 0.00302 -0.00004 0.00008 0.00004 -3.05546 D5 -0.92627 -0.00301 -0.00003 0.00021 0.00017 -0.92610 D6 1.15070 0.00000 -0.00004 0.00015 0.00011 1.15081 Item Value Threshold Converged? Maximum Force 0.000022 0.000450 YES RMS Force 0.000007 0.000300 YES Maximum Displacement 0.000144 0.001800 YES RMS Displacement 0.000064 0.001200 YES Predicted change in Energy=-4.832170D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0192 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0192 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7547 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4956 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4956 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5114 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.161 -DE/DX = 0.0 ! ! A2 A(2,1,4) 116.8065 -DE/DX = 0.0 ! ! A3 A(3,1,4) 116.8065 -DE/DX = 0.0 ! ! A4 A(1,4,5) 110.0039 -DE/DX = -0.0039 ! ! A5 A(1,4,6) 110.0039 -DE/DX = -0.0039 ! ! A6 A(1,4,7) 105.82 -DE/DX = 0.0251 ! ! A7 A(5,4,6) 110.5383 -DE/DX = -0.0008 ! ! A8 A(5,4,7) 110.1864 -DE/DX = -0.0079 ! ! A9 A(6,4,7) 110.1864 -DE/DX = -0.0079 ! ! D1 D(2,1,4,5) 53.0715 -DE/DX = 0.003 ! ! D2 D(2,1,4,6) 175.0674 -DE/DX = -0.003 ! ! D3 D(2,1,4,7) -65.9305 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -175.0674 -DE/DX = 0.003 ! ! D5 D(3,1,4,6) -53.0715 -DE/DX = -0.003 ! ! D6 D(3,1,4,7) 65.9305 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01336633 RMS(Int)= 0.00368361 Iteration 2 RMS(Cart)= 0.00013651 RMS(Int)= 0.00368096 Iteration 3 RMS(Cart)= 0.00000057 RMS(Int)= 0.00368096 Iteration 1 RMS(Cart)= 0.00311039 RMS(Int)= 0.00086396 Iteration 2 RMS(Cart)= 0.00072906 RMS(Int)= 0.00093849 Iteration 3 RMS(Cart)= 0.00017135 RMS(Int)= 0.00097532 Iteration 4 RMS(Cart)= 0.00004030 RMS(Int)= 0.00098487 Iteration 5 RMS(Cart)= 0.00000948 RMS(Int)= 0.00098716 Iteration 6 RMS(Cart)= 0.00000223 RMS(Int)= 0.00098771 Iteration 7 RMS(Cart)= 0.00000052 RMS(Int)= 0.00098783 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.032193 0.799906 -0.000000 2 1 0 -1.576943 1.028232 -0.830615 3 1 0 -1.576943 1.028232 0.830615 4 14 0 -0.198689 -0.744201 0.000000 5 1 0 0.645920 -0.860909 -1.228769 6 1 0 0.645920 -0.860909 1.228769 7 1 0 -1.245157 -1.834686 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019218 0.000000 3 H 1.019218 1.661229 0.000000 4 Si 1.754707 2.393955 2.393955 0.000000 5 H 2.661624 2.944232 3.570859 1.495613 0.000000 6 H 2.661624 3.570859 2.944232 1.495613 2.457539 7 H 2.643186 2.999384 2.999384 1.511375 2.456479 6 7 6 H 0.000000 7 H 2.456479 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.030965 1.168499 -0.000000 2 1 0 0.339947 1.628183 0.830615 3 1 0 0.339947 1.628183 -0.830615 4 14 0 -0.030965 -0.586208 0.000000 5 1 0 -0.718767 -1.090107 1.228769 6 1 0 -0.718767 -1.090107 -1.228769 7 1 0 1.407898 -1.048730 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.6773330 12.3612423 12.0164351 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9796075740 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9695762861 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 0.999998 0.000000 0.000000 0.002119 Ang= 0.24 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.65D-04 Max=2.63D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=7.42D-05 Max=7.74D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.08D-05 Max=3.48D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.93D-06 Max=5.73D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.80D-06 Max=2.95D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.91D-07 Max=6.21D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=9.98D-08 Max=9.28D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.65D-08 Max=3.21D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=4.94D-09 Max=3.99D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=7.42D-10 Max=5.47D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 2.27D-04 DF= -2.22D-12 DXR= 2.27D-04 DFR= 5.12D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=5.34D-07 Max=5.48D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.46D-07 Max=2.40D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.05D-07 Max=8.46D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.96D-08 Max=2.06D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.21D-09 Max=4.41D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.67D-10 Max=7.22D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.23D-10 Max=1.47D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.57D-11 Max=4.31D-10 NDo= 1 Linear equations converged to 1.116D-10 1.116D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.090138629 a.u. after 3 cycles Convg = 0.8047D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.007516514 0.003010535 0.000000000 2 1 -0.000093547 0.000117857 -0.000080010 3 1 -0.000093547 0.000117857 0.000080010 4 14 -0.014203757 0.002758229 -0.000000000 5 1 0.000059423 0.000118665 -0.000100387 6 1 0.000059423 0.000118665 0.000100387 7 1 0.006755489 -0.006241808 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.014203757 RMS 0.004138243 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.020190949 RMS 0.005041403 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 17 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00868 0.02387 0.05741 0.07562 0.08623 Eigenvalues --- 0.13561 0.16000 0.16000 0.16420 0.16944 Eigenvalues --- 0.17253 0.41134 0.44404 0.462001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-5.92741097D-06 EMin= 8.68190905D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00325369 RMS(Int)= 0.00002946 Iteration 2 RMS(Cart)= 0.00002266 RMS(Int)= 0.00002116 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00002116 Iteration 1 RMS(Cart)= 0.00000014 RMS(Int)= 0.00000004 ClnCor: largest displacement from symmetrization is 7.02D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92604 0.00014 0.00000 -0.00005 -0.00005 1.92599 R2 1.92604 0.00014 0.00000 -0.00005 -0.00005 1.92599 R3 3.31592 -0.00062 0.00000 -0.00356 -0.00356 3.31235 R4 2.82630 0.00011 0.00000 0.00073 0.00073 2.82703 R5 2.82630 0.00011 0.00000 0.00073 0.00073 2.82703 R6 2.85608 -0.00017 0.00000 -0.00108 -0.00108 2.85500 A1 1.90530 -0.00011 0.00000 0.00145 0.00139 1.90668 A2 2.03870 0.00010 0.00000 0.00555 0.00551 2.04421 A3 2.03870 0.00010 0.00000 0.00555 0.00551 2.04421 A4 1.91444 -0.00347 0.00000 -0.00143 -0.00143 1.91301 A5 1.91444 -0.00347 0.00000 -0.00143 -0.00143 1.91301 A6 1.88181 0.02019 0.00000 0.00000 0.00000 1.88181 A7 1.92836 -0.00041 0.00000 0.00040 0.00040 1.92876 A8 1.91209 -0.00620 0.00000 0.00122 0.00122 1.91332 A9 1.91209 -0.00620 0.00000 0.00122 0.00122 1.91332 D1 0.93028 0.00244 0.00000 -0.00678 -0.00679 0.92349 D2 3.05128 -0.00250 0.00000 -0.00810 -0.00812 3.04316 D3 -1.15081 -0.00003 0.00000 -0.00744 -0.00745 -1.15827 D4 -3.05128 0.00250 0.00000 0.00810 0.00812 -3.04316 D5 -0.93028 -0.00244 0.00000 0.00678 0.00679 -0.92349 D6 1.15081 0.00003 0.00000 0.00744 0.00745 1.15827 Item Value Threshold Converged? Maximum Force 0.000625 0.000450 NO RMS Force 0.000183 0.000300 YES Maximum Displacement 0.008370 0.001800 NO RMS Displacement 0.003252 0.001200 NO Predicted change in Energy=-2.970493D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.034250 0.795477 -0.000000 2 1 0 -1.575309 1.030932 -0.831001 3 1 0 -1.575309 1.030932 0.831001 4 14 0 -0.199658 -0.745900 0.000000 5 1 0 0.645385 -0.859229 -1.229259 6 1 0 0.645385 -0.859229 1.229259 7 1 0 -1.244327 -1.837317 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019189 0.000000 3 H 1.019189 1.662003 0.000000 4 Si 1.752822 2.395853 2.395853 0.000000 5 H 2.659004 2.943264 3.570555 1.496001 0.000000 6 H 2.659004 3.570555 2.943264 1.496001 2.458518 7 H 2.641162 3.004491 3.004491 1.510803 2.457386 6 7 6 H 0.000000 7 H 2.457386 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.030284 1.166731 0.000000 2 1 0 0.333395 1.631404 0.831001 3 1 0 0.333395 1.631404 -0.831001 4 14 0 -0.030284 -0.586091 -0.000000 5 1 0 -0.719428 -1.088109 1.229259 6 1 0 -0.719428 -1.088109 -1.229259 7 1 0 1.408034 -1.048438 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.7020054 12.3787473 12.0300177 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0089420970 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9989110031 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000381 Ang= -0.04 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=1.40D-04 Max=1.43D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=3.59D-05 Max=3.21D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.49D-05 Max=2.76D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=6.28D-06 Max=6.99D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.99D-06 Max=1.66D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=3.93D-07 Max=2.31D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.11D-07 Max=8.79D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.17D-08 Max=3.34D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=3.88D-09 Max=3.07D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=5.83D-10 Max=3.59D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 7.02D-05 DF= -1.14D-13 DXR= 7.02D-05 DFR= 7.88D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.29D-07 Max=1.40D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.09D-07 Max=1.17D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=3.76D-08 Max=3.04D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.21D-08 Max=1.16D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.47D-09 Max=1.62D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.56D-10 Max=2.49D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.06D-11 Max=3.78D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.21D-11 Max=1.14D-10 NDo= 1 Linear equations converged to 3.702D-11 3.702D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.090141545 a.u. after 3 cycles Convg = 0.2284D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.007064967 0.003807654 0.000000000 2 1 -0.000006376 0.000000530 -0.000007764 3 1 -0.000006376 0.000000530 0.000007764 4 14 -0.013775100 0.002633064 -0.000000000 5 1 -0.000001195 -0.000005011 -0.000000966 6 1 -0.000001195 -0.000005011 0.000000966 7 1 0.006725276 -0.006431755 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.013775100 RMS 0.004069020 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.020330253 RMS 0.005070829 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 17 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.92D-06 DEPred=-2.97D-06 R= 9.82D-01 TightC=F SS= 1.41D+00 RLast= 2.05D-02 DXNew= 3.1674D-01 6.1471D-02 Trust test= 9.82D-01 RLast= 2.05D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00871 0.02387 0.05767 0.07646 0.08627 Eigenvalues --- 0.13581 0.16000 0.16000 0.16415 0.16944 Eigenvalues --- 0.17241 0.40893 0.44404 0.461601000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda= 0.00000000D+00 EMin= 8.70961990D-03 Quartic linear search produced a step of -0.01078. Iteration 1 RMS(Cart)= 0.00007348 RMS(Int)= 0.00000023 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000023 Iteration 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.32D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92599 0.00001 0.00000 0.00003 0.00003 1.92602 R2 1.92599 0.00001 0.00000 0.00003 0.00003 1.92602 R3 3.31235 -0.00001 0.00004 -0.00009 -0.00005 3.31230 R4 2.82703 0.00000 -0.00001 0.00001 0.00000 2.82703 R5 2.82703 0.00000 -0.00001 0.00001 0.00000 2.82703 R6 2.85500 -0.00000 0.00001 -0.00002 -0.00000 2.85500 A1 1.90668 0.00000 -0.00001 -0.00000 -0.00001 1.90667 A2 2.04421 -0.00000 -0.00006 0.00002 -0.00004 2.04417 A3 2.04421 -0.00000 -0.00006 0.00002 -0.00004 2.04417 A4 1.91301 -0.00328 0.00002 0.00009 0.00011 1.91312 A5 1.91301 -0.00328 0.00002 0.00009 0.00011 1.91312 A6 1.88181 0.02033 -0.00000 0.00000 0.00000 1.88181 A7 1.92876 -0.00055 -0.00000 -0.00001 -0.00001 1.92875 A8 1.91332 -0.00638 -0.00001 -0.00009 -0.00010 1.91322 A9 1.91332 -0.00638 -0.00001 -0.00009 -0.00010 1.91322 D1 0.92349 0.00242 0.00007 -0.00008 -0.00000 0.92348 D2 3.04316 -0.00242 0.00009 0.00003 0.00011 3.04328 D3 -1.15827 0.00000 0.00008 -0.00003 0.00005 -1.15821 D4 -3.04316 0.00242 -0.00009 -0.00003 -0.00011 -3.04328 D5 -0.92349 -0.00242 -0.00007 0.00008 0.00000 -0.92348 D6 1.15827 -0.00000 -0.00008 0.00003 -0.00005 1.15821 Item Value Threshold Converged? Maximum Force 0.000010 0.000450 YES RMS Force 0.000005 0.000300 YES Maximum Displacement 0.000159 0.001800 YES RMS Displacement 0.000073 0.001200 YES Predicted change in Energy=-4.297318D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0192 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0192 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7528 -DE/DX = 0.0 ! ! R4 R(4,5) 1.496 -DE/DX = 0.0 ! ! R5 R(4,6) 1.496 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5108 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.245 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.1244 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.1244 -DE/DX = 0.0 ! ! A4 A(1,4,5) 109.6074 -DE/DX = -0.0033 ! ! A5 A(1,4,6) 109.6074 -DE/DX = -0.0033 ! ! A6 A(1,4,7) 107.82 -DE/DX = 0.0203 ! ! A7 A(5,4,6) 110.51 -DE/DX = -0.0005 ! ! A8 A(5,4,7) 109.6249 -DE/DX = -0.0064 ! ! A9 A(6,4,7) 109.6249 -DE/DX = -0.0064 ! ! D1 D(2,1,4,5) 52.9119 -DE/DX = 0.0024 ! ! D2 D(2,1,4,6) 174.3604 -DE/DX = -0.0024 ! ! D3 D(2,1,4,7) -66.3639 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -174.3604 -DE/DX = 0.0024 ! ! D5 D(3,1,4,6) -52.9119 -DE/DX = -0.0024 ! ! D6 D(3,1,4,7) 66.3639 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01325567 RMS(Int)= 0.00369984 Iteration 2 RMS(Cart)= 0.00013455 RMS(Int)= 0.00369729 Iteration 3 RMS(Cart)= 0.00000053 RMS(Int)= 0.00369729 Iteration 1 RMS(Cart)= 0.00311186 RMS(Int)= 0.00087499 Iteration 2 RMS(Cart)= 0.00073549 RMS(Int)= 0.00095087 Iteration 3 RMS(Cart)= 0.00017426 RMS(Int)= 0.00098869 Iteration 4 RMS(Cart)= 0.00004131 RMS(Int)= 0.00099859 Iteration 5 RMS(Cart)= 0.00000980 RMS(Int)= 0.00100099 Iteration 6 RMS(Cart)= 0.00000232 RMS(Int)= 0.00100156 Iteration 7 RMS(Cart)= 0.00000055 RMS(Int)= 0.00100169 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.031908 0.801163 -0.000000 2 1 0 -1.571026 1.041065 -0.831009 3 1 0 -1.571026 1.041065 0.831009 4 14 0 -0.210190 -0.747086 0.000000 5 1 0 0.635779 -0.857324 -1.228905 6 1 0 0.635779 -0.857324 1.228905 7 1 0 -1.225493 -1.865894 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019204 0.000000 3 H 1.019204 1.662017 0.000000 4 Si 1.752797 2.395816 2.395816 0.000000 5 H 2.653671 2.938060 3.566107 1.496002 0.000000 6 H 2.653671 3.566107 2.938060 1.496002 2.457809 7 H 2.674074 3.043088 3.043088 1.510819 2.447806 6 7 6 H 0.000000 7 H 2.447806 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.029141 1.168017 0.000000 2 1 0 0.334596 1.632664 0.831009 3 1 0 0.334596 1.632664 -0.831009 4 14 0 -0.029141 -0.584779 -0.000000 5 1 0 -0.724707 -1.078747 1.228905 6 1 0 -0.724707 -1.078747 -1.228905 7 1 0 1.392181 -1.097047 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.9438408 12.3661446 12.0110457 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9959240511 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9859070516 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 0.999998 0.000000 -0.000000 0.002156 Ang= 0.25 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.62D-04 Max=2.62D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=7.00D-05 Max=7.29D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.98D-05 Max=3.47D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.70D-06 Max=5.46D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.72D-06 Max=2.81D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.83D-07 Max=6.43D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=8.96D-08 Max=9.78D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.10D-08 Max=2.67D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=4.32D-09 Max=3.57D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=6.35D-10 Max=4.69D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.92D-04 DF= -1.59D-12 DXR= 1.92D-04 DFR= 3.74D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.79D-07 Max=4.72D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.42D-07 Max=2.61D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.03D-07 Max=8.27D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.87D-08 Max=2.22D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.59D-09 Max=5.34D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.49D-10 Max=9.34D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.38D-10 Max=1.46D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.46D-11 Max=3.94D-10 NDo= 1 Linear equations converged to 1.019D-10 1.019D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.090959844 a.u. after 3 cycles Convg = 0.7569D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.005920747 0.002193165 0.000000000 2 1 -0.000100217 0.000109466 -0.000076248 3 1 -0.000100217 0.000109466 0.000076248 4 14 -0.011189921 0.001999294 -0.000000000 5 1 0.000060811 0.000115829 -0.000103848 6 1 0.000060811 0.000115829 0.000103848 7 1 0.005347985 -0.004643050 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.011189921 RMS 0.003231888 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.015528491 RMS 0.003883108 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 18 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00870 0.02387 0.05782 0.07468 0.08443 Eigenvalues --- 0.13582 0.16000 0.16000 0.16411 0.16944 Eigenvalues --- 0.17243 0.40926 0.44404 0.461601000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.45756296D-06 EMin= 8.70265406D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00268900 RMS(Int)= 0.00001926 Iteration 2 RMS(Cart)= 0.00001520 RMS(Int)= 0.00001370 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001370 Iteration 1 RMS(Cart)= 0.00000015 RMS(Int)= 0.00000004 ClnCor: largest displacement from symmetrization is 2.76D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92602 0.00014 0.00000 0.00003 0.00003 1.92604 R2 1.92602 0.00014 0.00000 0.00003 0.00003 1.92604 R3 3.31231 -0.00055 0.00000 -0.00290 -0.00290 3.30941 R4 2.82703 0.00011 0.00000 0.00073 0.00073 2.82776 R5 2.82703 0.00011 0.00000 0.00073 0.00073 2.82776 R6 2.85503 -0.00016 0.00000 -0.00097 -0.00097 2.85406 A1 1.90667 -0.00011 0.00000 0.00094 0.00090 1.90757 A2 2.04417 0.00009 0.00000 0.00447 0.00444 2.04861 A3 2.04417 0.00009 0.00000 0.00447 0.00444 2.04861 A4 1.90730 -0.00282 0.00000 -0.00142 -0.00142 1.90588 A5 1.90730 -0.00282 0.00000 -0.00142 -0.00142 1.90588 A6 1.91672 0.01553 0.00000 0.00000 0.00000 1.91672 A7 1.92793 -0.00024 0.00000 0.00043 0.00043 1.92836 A8 1.90228 -0.00473 0.00000 0.00121 0.00121 1.90349 A9 1.90228 -0.00473 0.00000 0.00121 0.00121 1.90349 D1 0.92763 0.00187 0.00000 -0.00538 -0.00539 0.92224 D2 3.03913 -0.00191 0.00000 -0.00660 -0.00661 3.03252 D3 -1.15821 -0.00002 0.00000 -0.00599 -0.00600 -1.16422 D4 -3.03913 0.00191 0.00000 0.00660 0.00661 -3.03252 D5 -0.92763 -0.00187 0.00000 0.00538 0.00539 -0.92224 D6 1.15821 0.00002 0.00000 0.00599 0.00600 1.16422 Item Value Threshold Converged? Maximum Force 0.000551 0.000450 NO RMS Force 0.000169 0.000300 YES Maximum Displacement 0.006922 0.001800 NO RMS Displacement 0.002689 0.001200 NO Predicted change in Energy=-2.234593D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.033504 0.797500 -0.000000 2 1 0 -1.569615 1.043172 -0.831285 3 1 0 -1.569615 1.043172 0.831285 4 14 0 -0.211024 -0.748608 0.000000 5 1 0 0.635292 -0.855782 -1.229406 6 1 0 0.635292 -0.855782 1.229406 7 1 0 -1.224910 -1.868006 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019218 0.000000 3 H 1.019218 1.662569 0.000000 4 Si 1.751264 2.397349 2.397349 0.000000 5 H 2.651351 2.937030 3.565682 1.496387 0.000000 6 H 2.651351 3.565682 2.937030 1.496387 2.458811 7 H 2.672370 3.047099 3.047099 1.510304 2.448752 6 7 6 H 0.000000 7 H 2.448752 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.028578 1.166554 0.000000 2 1 0 0.329351 1.635230 0.831285 3 1 0 0.329351 1.635230 -0.831285 4 14 0 -0.028578 -0.584710 -0.000000 5 1 0 -0.725416 -1.076800 1.229406 6 1 0 -0.725416 -1.076800 -1.229406 7 1 0 1.392260 -1.096803 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 65.9555410 12.3806889 12.0224283 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0195698732 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0095527511 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.25D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000288 Ang= -0.03 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=1.12D-04 Max=1.14D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.80D-05 Max=2.49D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.98D-05 Max=2.25D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=5.18D-06 Max=5.79D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.62D-06 Max=1.32D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=3.24D-07 Max=1.90D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=9.19D-08 Max=7.33D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.58D-08 Max=2.71D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=3.09D-09 Max=2.56D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 5.86D-05 DF= 0.00D+00 DXR= 5.86D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=8.14D-08 Max=8.84D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=7.05D-08 Max=7.13D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.46D-08 Max=2.00D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.89D-09 Max=7.19D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.61D-09 Max=1.09D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.70D-10 Max=1.72D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.62D-11 Max=2.35D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=7.92D-12 Max=7.63D-11 NDo= 1 Linear equations converged to 2.352D-11 2.352D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.090962044 a.u. after 3 cycles Convg = 0.1467D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1459. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.005500018 0.002878241 0.000000000 2 1 -0.000010952 0.000000051 -0.000003985 3 1 -0.000010952 0.000000051 0.000003985 4 14 -0.010800925 0.001941794 -0.000000000 5 1 0.000000117 -0.000004054 -0.000001181 6 1 0.000000117 -0.000004054 0.000001181 7 1 0.005322578 -0.004812030 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.010800925 RMS 0.003165670 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.015633015 RMS 0.003904136 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 18 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.20D-06 DEPred=-2.23D-06 R= 9.84D-01 TightC=F SS= 1.41D+00 RLast= 1.66D-02 DXNew= 3.1674D-01 4.9785D-02 Trust test= 9.84D-01 RLast= 1.66D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00889 0.02387 0.05810 0.07613 0.08447 Eigenvalues --- 0.13542 0.16000 0.16000 0.16406 0.16944 Eigenvalues --- 0.17217 0.39955 0.44404 0.461331000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda= 0.00000000D+00 EMin= 8.88756999D-03 Quartic linear search produced a step of -0.01376. Iteration 1 RMS(Cart)= 0.00009906 RMS(Int)= 0.00000018 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000018 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.73D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92604 0.00001 -0.00000 0.00003 0.00003 1.92607 R2 1.92604 0.00001 -0.00000 0.00003 0.00003 1.92607 R3 3.30941 -0.00003 0.00004 -0.00012 -0.00008 3.30933 R4 2.82776 0.00000 -0.00001 0.00001 0.00000 2.82777 R5 2.82776 0.00000 -0.00001 0.00001 0.00000 2.82777 R6 2.85406 -0.00001 0.00001 -0.00002 -0.00001 2.85405 A1 1.90757 -0.00000 -0.00001 -0.00007 -0.00008 1.90748 A2 2.04861 -0.00000 -0.00006 -0.00002 -0.00008 2.04853 A3 2.04861 -0.00000 -0.00006 -0.00002 -0.00008 2.04853 A4 1.90588 -0.00263 0.00002 0.00009 0.00011 1.90599 A5 1.90588 -0.00263 0.00002 0.00009 0.00011 1.90599 A6 1.91672 0.01563 -0.00000 0.00000 0.00000 1.91672 A7 1.92836 -0.00038 -0.00001 -0.00003 -0.00003 1.92833 A8 1.90349 -0.00490 -0.00002 -0.00008 -0.00009 1.90340 A9 1.90349 -0.00490 -0.00002 -0.00008 -0.00009 1.90340 D1 0.92224 0.00185 0.00007 0.00004 0.00012 0.92235 D2 3.03252 -0.00184 0.00009 0.00012 0.00021 3.03273 D3 -1.16422 0.00000 0.00008 0.00008 0.00016 -1.16405 D4 -3.03252 0.00184 -0.00009 -0.00012 -0.00021 -3.03273 D5 -0.92224 -0.00185 -0.00007 -0.00004 -0.00012 -0.92235 D6 1.16422 -0.00000 -0.00008 -0.00008 -0.00016 1.16405 Item Value Threshold Converged? Maximum Force 0.000032 0.000450 YES RMS Force 0.000008 0.000300 YES Maximum Displacement 0.000210 0.001800 YES RMS Displacement 0.000099 0.001200 YES Predicted change in Energy=-6.254833D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0192 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0192 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7513 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4964 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4964 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5103 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.2956 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.3767 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.3767 -DE/DX = 0.0 ! ! A4 A(1,4,5) 109.1991 -DE/DX = -0.0026 ! ! A5 A(1,4,6) 109.1991 -DE/DX = -0.0026 ! ! A6 A(1,4,7) 109.82 -DE/DX = 0.0156 ! ! A7 A(5,4,6) 110.4871 -DE/DX = -0.0004 ! ! A8 A(5,4,7) 109.062 -DE/DX = -0.0049 ! ! A9 A(6,4,7) 109.062 -DE/DX = -0.0049 ! ! D1 D(2,1,4,5) 52.8403 -DE/DX = 0.0019 ! ! D2 D(2,1,4,6) 173.7504 -DE/DX = -0.0018 ! ! D3 D(2,1,4,7) -66.7046 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -173.7504 -DE/DX = 0.0018 ! ! D5 D(3,1,4,6) -52.8403 -DE/DX = -0.0019 ! ! D6 D(3,1,4,7) 66.7046 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01315098 RMS(Int)= 0.00371395 Iteration 2 RMS(Cart)= 0.00013276 RMS(Int)= 0.00371148 Iteration 3 RMS(Cart)= 0.00000049 RMS(Int)= 0.00371148 Iteration 1 RMS(Cart)= 0.00311089 RMS(Int)= 0.00088464 Iteration 2 RMS(Cart)= 0.00074055 RMS(Int)= 0.00096170 Iteration 3 RMS(Cart)= 0.00017669 RMS(Int)= 0.00100040 Iteration 4 RMS(Cart)= 0.00004218 RMS(Int)= 0.00101061 Iteration 5 RMS(Cart)= 0.00001007 RMS(Int)= 0.00101309 Iteration 6 RMS(Cart)= 0.00000240 RMS(Int)= 0.00101369 Iteration 7 RMS(Cart)= 0.00000057 RMS(Int)= 0.00101383 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.031105 0.803006 -0.000000 2 1 0 -1.565231 1.053072 -0.831274 3 1 0 -1.565231 1.053072 0.831274 4 14 0 -0.221743 -0.749964 0.000000 5 1 0 0.625450 -0.853862 -1.229086 6 1 0 0.625450 -0.853862 1.229086 7 1 0 -1.205676 -1.895798 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019235 0.000000 3 H 1.019235 1.662547 0.000000 4 Si 1.751223 2.397272 2.397272 0.000000 5 H 2.645758 2.931507 3.560977 1.496390 0.000000 6 H 2.645758 3.560977 2.931507 1.496390 2.458171 7 H 2.704444 3.084822 3.084822 1.510317 2.439119 6 7 6 H 0.000000 7 H 2.439119 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.027375 1.167781 0.000000 2 1 0 0.330710 1.636394 0.831274 3 1 0 0.330710 1.636394 -0.831274 4 14 0 -0.027375 -0.583442 -0.000000 5 1 0 -0.730641 -1.067124 1.229086 6 1 0 -0.730641 -1.067124 -1.229086 7 1 0 1.374737 -1.144814 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.2365304 12.3688477 12.0029151 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0083265285 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9983220739 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.26D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 0.999998 -0.000000 -0.000000 0.002190 Ang= 0.25 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.60D-04 Max=2.60D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=6.56D-05 Max=6.81D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.91D-05 Max=3.31D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.51D-06 Max=5.21D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.64D-06 Max=2.68D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.79D-07 Max=6.44D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=8.49D-08 Max=1.03D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.61D-08 Max=2.01D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=3.67D-09 Max=2.82D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=5.47D-10 Max=3.75D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 1.60D-04 DF= -1.08D-12 DXR= 1.60D-04 DFR= 2.56D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.39D-07 Max=3.99D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.41D-07 Max=2.84D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.01D-07 Max=8.10D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.83D-08 Max=2.51D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.10D-09 Max=6.21D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.07D-09 Max=1.12D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.41D-10 Max=1.49D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.27D-11 Max=3.42D-10 NDo= 1 Linear equations converged to 9.515D-11 9.515D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.091570839 a.u. after 3 cycles Convg = 0.7165D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.004338117 0.001405538 0.000000000 2 1 -0.000106120 0.000102875 -0.000073297 3 1 -0.000106120 0.000102875 0.000073297 4 14 -0.008138896 0.001330513 -0.000000000 5 1 0.000061947 0.000110555 -0.000107271 6 1 0.000061947 0.000110555 0.000107271 7 1 0.003889126 -0.003162912 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.008138896 RMS 0.002330395 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.010991099 RMS 0.002753049 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 19 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00888 0.02387 0.05827 0.07443 0.08256 Eigenvalues --- 0.13544 0.16000 0.16000 0.16402 0.16944 Eigenvalues --- 0.17219 0.39987 0.44404 0.461331000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-3.36298527D-06 EMin= 8.87685408D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00218545 RMS(Int)= 0.00001202 Iteration 2 RMS(Cart)= 0.00000980 RMS(Int)= 0.00000845 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000845 Iteration 1 RMS(Cart)= 0.00000015 RMS(Int)= 0.00000004 ClnCor: largest displacement from symmetrization is 3.33D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92607 0.00014 0.00000 0.00010 0.00010 1.92617 R2 1.92607 0.00014 0.00000 0.00010 0.00010 1.92617 R3 3.30933 -0.00048 0.00000 -0.00236 -0.00236 3.30697 R4 2.82777 0.00012 0.00000 0.00073 0.00073 2.82850 R5 2.82777 0.00012 0.00000 0.00073 0.00073 2.82850 R6 2.85409 -0.00013 0.00000 -0.00084 -0.00084 2.85324 A1 1.90748 -0.00011 0.00000 0.00049 0.00046 1.90794 A2 2.04853 0.00009 0.00000 0.00355 0.00354 2.05207 A3 2.04853 0.00009 0.00000 0.00355 0.00354 2.05207 A4 1.89994 -0.00212 0.00000 -0.00136 -0.00136 1.89858 A5 1.89994 -0.00212 0.00000 -0.00136 -0.00136 1.89858 A6 1.95163 0.01099 0.00000 0.00000 0.00000 1.95163 A7 1.92761 -0.00011 0.00000 0.00044 0.00044 1.92805 A8 1.89248 -0.00331 0.00000 0.00116 0.00115 1.89363 A9 1.89248 -0.00331 0.00000 0.00116 0.00115 1.89363 D1 0.92646 0.00132 0.00000 -0.00413 -0.00413 0.92233 D2 3.02862 -0.00135 0.00000 -0.00522 -0.00522 3.02340 D3 -1.16405 -0.00001 0.00000 -0.00467 -0.00468 -1.16873 D4 -3.02862 0.00135 0.00000 0.00522 0.00522 -3.02340 D5 -0.92646 -0.00132 0.00000 0.00413 0.00413 -0.92233 D6 1.16405 0.00001 0.00000 0.00467 0.00468 1.16873 Item Value Threshold Converged? Maximum Force 0.000478 0.000450 NO RMS Force 0.000153 0.000300 YES Maximum Displacement 0.005641 0.001800 NO RMS Displacement 0.002186 0.001200 NO Predicted change in Energy=-1.685899D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.032279 0.800021 -0.000000 2 1 0 -1.564054 1.054674 -0.831452 3 1 0 -1.564054 1.054674 0.831452 4 14 0 -0.222444 -0.751295 0.000000 5 1 0 0.625028 -0.852477 -1.229590 6 1 0 0.625028 -0.852477 1.229590 7 1 0 -1.205310 -1.897456 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019286 0.000000 3 H 1.019286 1.662903 0.000000 4 Si 1.749975 2.398490 2.398490 0.000000 5 H 2.643730 2.930498 3.560506 1.496776 0.000000 6 H 2.643730 3.560506 2.930498 1.496776 2.459180 7 H 2.703020 3.087893 3.087893 1.509871 2.440085 6 7 6 H 0.000000 7 H 2.440085 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.026921 1.166572 0.000000 2 1 0 0.326641 1.638406 0.831452 3 1 0 0.326641 1.638406 -0.831452 4 14 0 -0.026921 -0.583403 -0.000000 5 1 0 -0.731363 -1.065283 1.229590 6 1 0 -0.731363 -1.065283 -1.229590 7 1 0 1.374777 -1.144610 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.2374691 12.3809232 12.0124869 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0271950914 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0171903144 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.26D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 -0.000207 Ang= -0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=8.82D-05 Max=8.88D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.13D-05 Max=1.89D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.54D-05 Max=1.63D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.22D-06 Max=4.73D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.29D-06 Max=1.01D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.64D-07 Max=1.58D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=7.53D-08 Max=6.11D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.07D-08 Max=2.01D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.43D-09 Max=2.07D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 4.87D-05 DF= 0.00D+00 DXR= 4.87D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.91D-08 Max=5.32D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=4.34D-08 Max=3.90D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.53D-08 Max=1.25D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.93D-09 Max=4.52D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.01D-09 Max=7.07D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.09D-10 Max=1.11D-09 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.73D-11 Max=1.48D-10 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=5.40D-12 Max=5.17D-11 NDo= 1 Linear equations converged to 1.424D-11 1.424D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.091572498 a.u. after 3 cycles Convg = 0.9839D-11 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.003940526 0.002001594 0.000000000 2 1 -0.000013007 -0.000000363 -0.000000933 3 1 -0.000013007 -0.000000363 0.000000933 4 14 -0.007786307 0.001312553 -0.000000000 5 1 0.000000362 -0.000002036 -0.000001312 6 1 0.000000362 -0.000002036 0.000001312 7 1 0.003871070 -0.003309349 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.007786307 RMS 0.002265905 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.011068312 RMS 0.002767239 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 19 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.66D-06 DEPred=-1.69D-06 R= 9.84D-01 TightC=F SS= 1.41D+00 RLast= 1.31D-02 DXNew= 3.1674D-01 3.9294D-02 Trust test= 9.84D-01 RLast= 1.31D-02 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00919 0.02387 0.05851 0.07605 0.08260 Eigenvalues --- 0.13432 0.16000 0.16000 0.16398 0.16944 Eigenvalues --- 0.17177 0.38653 0.44404 0.461201000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.01936789D-08 EMin= 9.18734815D-03 Quartic linear search produced a step of -0.01321. Iteration 1 RMS(Cart)= 0.00010326 RMS(Int)= 0.00000010 Iteration 2 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000010 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 3.61D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92617 0.00001 -0.00000 0.00003 0.00003 1.92620 R2 1.92617 0.00001 -0.00000 0.00003 0.00003 1.92620 R3 3.30697 -0.00004 0.00003 -0.00010 -0.00007 3.30691 R4 2.82850 0.00000 -0.00001 0.00001 0.00000 2.82850 R5 2.82850 0.00000 -0.00001 0.00001 0.00000 2.82850 R6 2.85324 -0.00001 0.00001 -0.00003 -0.00002 2.85323 A1 1.90794 -0.00001 -0.00001 -0.00011 -0.00012 1.90782 A2 2.05207 0.00000 -0.00005 -0.00005 -0.00010 2.05197 A3 2.05207 0.00000 -0.00005 -0.00005 -0.00010 2.05197 A4 1.89858 -0.00194 0.00002 0.00006 0.00007 1.89865 A5 1.89858 -0.00194 0.00002 0.00006 0.00007 1.89865 A6 1.95163 0.01107 -0.00000 0.00000 0.00000 1.95163 A7 1.92805 -0.00024 -0.00001 -0.00001 -0.00002 1.92803 A8 1.89363 -0.00347 -0.00002 -0.00005 -0.00007 1.89357 A9 1.89363 -0.00347 -0.00002 -0.00005 -0.00007 1.89357 D1 0.92233 0.00130 0.00005 0.00013 0.00019 0.92252 D2 3.02340 -0.00129 0.00007 0.00019 0.00026 3.02366 D3 -1.16873 0.00000 0.00006 0.00016 0.00022 -1.16850 D4 -3.02340 0.00129 -0.00007 -0.00019 -0.00026 -3.02366 D5 -0.92233 -0.00130 -0.00005 -0.00013 -0.00019 -0.92252 D6 1.16873 -0.00000 -0.00006 -0.00016 -0.00022 1.16850 Item Value Threshold Converged? Maximum Force 0.000038 0.000450 YES RMS Force 0.000009 0.000300 YES Maximum Displacement 0.000227 0.001800 YES RMS Displacement 0.000103 0.001200 YES Predicted change in Energy=-6.575548D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0193 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0193 -DE/DX = 0.0 ! ! R3 R(1,4) 1.75 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4968 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4968 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5099 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.3171 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.5748 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.5748 -DE/DX = 0.0 ! ! A4 A(1,4,5) 108.7806 -DE/DX = -0.0019 ! ! A5 A(1,4,6) 108.7806 -DE/DX = -0.0019 ! ! A6 A(1,4,7) 111.82 -DE/DX = 0.0111 ! ! A7 A(5,4,6) 110.4689 -DE/DX = -0.0002 ! ! A8 A(5,4,7) 108.4971 -DE/DX = -0.0035 ! ! A9 A(6,4,7) 108.4971 -DE/DX = -0.0035 ! ! D1 D(2,1,4,5) 52.8456 -DE/DX = 0.0013 ! ! D2 D(2,1,4,6) 173.2281 -DE/DX = -0.0013 ! ! D3 D(2,1,4,7) -66.9632 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -173.2281 -DE/DX = 0.0013 ! ! D5 D(3,1,4,6) -52.8456 -DE/DX = -0.0013 ! ! D6 D(3,1,4,7) 66.9632 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01305183 RMS(Int)= 0.00372616 Iteration 2 RMS(Cart)= 0.00013114 RMS(Int)= 0.00372376 Iteration 3 RMS(Cart)= 0.00000045 RMS(Int)= 0.00372376 Iteration 1 RMS(Cart)= 0.00310779 RMS(Int)= 0.00089302 Iteration 2 RMS(Cart)= 0.00074439 RMS(Int)= 0.00097112 Iteration 3 RMS(Cart)= 0.00017867 RMS(Int)= 0.00101059 Iteration 4 RMS(Cart)= 0.00004291 RMS(Int)= 0.00102106 Iteration 5 RMS(Cart)= 0.00001030 RMS(Int)= 0.00102363 Iteration 6 RMS(Cart)= 0.00000247 RMS(Int)= 0.00102425 Iteration 7 RMS(Cart)= 0.00000059 RMS(Int)= 0.00102440 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.029832 0.805326 -0.000000 2 1 0 -1.559553 1.064360 -0.831429 3 1 0 -1.559553 1.064360 0.831429 4 14 0 -0.233342 -0.752847 0.000000 5 1 0 0.614945 -0.850519 -1.229315 6 1 0 0.614945 -0.850519 1.229315 7 1 0 -1.185696 -1.924496 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019303 0.000000 3 H 1.019303 1.662859 0.000000 4 Si 1.749942 2.398406 2.398406 0.000000 5 H 2.637865 2.924640 3.555541 1.496779 0.000000 6 H 2.637865 3.555541 2.924640 1.496779 2.458630 7 H 2.734268 3.124788 3.124788 1.509880 2.430422 6 7 6 H 0.000000 7 H 2.430422 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.025656 1.167748 -0.000000 2 1 0 0.328115 1.639499 0.831429 3 1 0 0.328115 1.639499 -0.831429 4 14 0 -0.025656 -0.582195 0.000000 5 1 0 -0.736527 -1.055263 1.229315 6 1 0 -0.736527 -1.055263 -1.229315 7 1 0 1.355611 -1.191981 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.5558997 12.3696391 11.9922875 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0172502320 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0072567321 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.26D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999998 0.000000 -0.000000 0.002222 Ang= 0.25 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.59D-04 Max=2.58D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=6.07D-05 Max=6.29D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.85D-05 Max=3.15D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.37D-06 Max=4.98D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.58D-06 Max=2.56D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.80D-07 Max=6.25D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=8.40D-08 Max=1.08D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.25D-08 Max=1.40D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.84D-09 Max=2.33D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 1.30D-04 DF= -6.82D-13 DXR= 1.30D-04 DFR= 1.62D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.12D-07 Max=3.44D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.41D-07 Max=2.95D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.99D-08 Max=7.80D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.83D-08 Max=2.64D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.67D-09 Max=7.02D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.17D-09 Max=1.16D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.42D-10 Max=1.51D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.08D-11 Max=2.83D-10 NDo= 1 Linear equations converged to 9.089D-11 9.089D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.091976592 a.u. after 3 cycles Convg = 0.6878D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.002771000 0.000653921 0.000000000 2 1 -0.000111654 0.000097481 -0.000071781 3 1 -0.000111654 0.000097481 0.000071781 4 14 -0.005057198 0.000745404 -0.000000000 5 1 0.000063376 0.000103573 -0.000110690 6 1 0.000063376 0.000103573 0.000110690 7 1 0.002382753 -0.001801433 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.005057198 RMS 0.001435400 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.006570248 RMS 0.001650325 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 20 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00917 0.02387 0.05870 0.07444 0.08062 Eigenvalues --- 0.13436 0.16000 0.16000 0.16395 0.16944 Eigenvalues --- 0.17180 0.38684 0.44404 0.461201000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.52123708D-06 EMin= 9.17220980D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00174295 RMS(Int)= 0.00000692 Iteration 2 RMS(Cart)= 0.00000595 RMS(Int)= 0.00000475 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000475 Iteration 1 RMS(Cart)= 0.00000015 RMS(Int)= 0.00000004 ClnCor: largest displacement from symmetrization is 2.76D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92620 0.00014 0.00000 0.00016 0.00016 1.92636 R2 1.92620 0.00014 0.00000 0.00016 0.00016 1.92636 R3 3.30691 -0.00040 0.00000 -0.00185 -0.00185 3.30506 R4 2.82850 0.00012 0.00000 0.00074 0.00074 2.82924 R5 2.82850 0.00012 0.00000 0.00074 0.00074 2.82924 R6 2.85326 -0.00010 0.00000 -0.00067 -0.00067 2.85259 A1 1.90782 -0.00011 0.00000 0.00009 0.00007 1.90790 A2 2.05197 0.00008 0.00000 0.00274 0.00273 2.05470 A3 2.05197 0.00008 0.00000 0.00274 0.00273 2.05470 A4 1.89237 -0.00138 0.00000 -0.00131 -0.00131 1.89106 A5 1.89237 -0.00138 0.00000 -0.00131 -0.00131 1.89106 A6 1.98653 0.00657 0.00000 0.00000 0.00000 1.98653 A7 1.92740 -0.00001 0.00000 0.00046 0.00046 1.92785 A8 1.88266 -0.00193 0.00000 0.00111 0.00111 1.88377 A9 1.88266 -0.00193 0.00000 0.00111 0.00111 1.88377 D1 0.92658 0.00079 0.00000 -0.00296 -0.00296 0.92362 D2 3.01960 -0.00081 0.00000 -0.00392 -0.00392 3.01568 D3 -1.16850 -0.00001 0.00000 -0.00344 -0.00344 -1.17194 D4 -3.01960 0.00081 0.00000 0.00392 0.00392 -3.01568 D5 -0.92658 -0.00079 0.00000 0.00296 0.00296 -0.92362 D6 1.16850 0.00001 0.00000 0.00344 0.00344 1.17194 Item Value Threshold Converged? Maximum Force 0.000404 0.000450 YES RMS Force 0.000138 0.000300 YES Maximum Displacement 0.004470 0.001800 NO RMS Displacement 0.001744 0.001200 NO Predicted change in Energy=-1.263379D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.030603 0.802961 -0.000000 2 1 0 -1.558606 1.065521 -0.831521 3 1 0 -1.558606 1.065521 0.831521 4 14 0 -0.233909 -0.754005 0.000000 5 1 0 0.614594 -0.849277 -1.229829 6 1 0 0.614594 -0.849277 1.229829 7 1 0 -1.185548 -1.925777 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019388 0.000000 3 H 1.019388 1.663042 0.000000 4 Si 1.748961 2.399359 2.399359 0.000000 5 H 2.636104 2.923679 3.555055 1.497169 0.000000 6 H 2.636104 3.555055 2.923679 1.497169 2.459659 7 H 2.733134 3.127054 3.127054 1.509526 2.431428 6 7 6 H 0.000000 7 H 2.431428 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.025304 1.166774 -0.000000 2 1 0 0.325134 1.641029 0.831521 3 1 0 0.325134 1.641029 -0.831521 4 14 0 -0.025304 -0.582187 0.000000 5 1 0 -0.737262 -1.053515 1.229829 6 1 0 -0.737262 -1.053515 -1.229829 7 1 0 1.355639 -1.191831 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.5459761 12.3793362 12.0000958 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0314381950 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0214442782 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.27D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 0.000000 0.000000 -0.000133 Ang= -0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=6.66D-05 Max=6.54D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.53D-05 Max=1.33D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.12D-05 Max=1.13D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.33D-06 Max=3.68D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.00D-06 Max=7.43D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.08D-07 Max=1.25D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=6.04D-08 Max=5.00D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.62D-08 Max=1.53D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.84D-09 Max=1.58D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 3.83D-05 DF= 0.00D+00 DXR= 3.83D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=2.70D-08 Max=2.91D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.44D-08 Max=2.43D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=8.78D-09 Max=7.09D-08 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.81D-09 Max=2.65D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.74D-10 Max=4.20D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.51D-11 Max=7.03D-10 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.15D-11 Max=9.51D-11 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.64D-12 Max=3.32D-11 NDo= 1 Linear equations converged to 7.854D-12 7.854D-11 after 7 iterations. SCF Done: E(RB97D3) = -347.091977836 a.u. after 3 cycles Convg = 0.6666D-11 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1458. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.002397090 0.001164663 0.000000000 2 1 -0.000014898 0.000000206 0.000000410 3 1 -0.000014898 0.000000206 -0.000000410 4 14 -0.004746547 0.000760112 -0.000000000 5 1 0.000000713 -0.000002274 -0.000000633 6 1 0.000000713 -0.000002274 0.000000633 7 1 0.002377826 -0.001920639 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.004746547 RMS 0.001372404 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.006626487 RMS 0.001658325 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 20 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.24D-06 DEPred=-1.26D-06 R= 9.85D-01 TightC=F SS= 1.41D+00 RLast= 9.90D-03 DXNew= 3.1674D-01 2.9689D-02 Trust test= 9.85D-01 RLast= 9.90D-03 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00947 0.02387 0.05895 0.07717 0.08066 Eigenvalues --- 0.13227 0.16000 0.16000 0.16396 0.16944 Eigenvalues --- 0.17134 0.37117 0.44404 0.461131000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.25899271D-08 EMin= 9.47270618D-03 Quartic linear search produced a step of -0.01148. Iteration 1 RMS(Cart)= 0.00010078 RMS(Int)= 0.00000005 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000004 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 3.40D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92636 0.00001 -0.00000 0.00003 0.00003 1.92640 R2 1.92636 0.00001 -0.00000 0.00003 0.00003 1.92640 R3 3.30506 -0.00004 0.00002 -0.00012 -0.00009 3.30496 R4 2.82924 0.00000 -0.00001 0.00001 0.00001 2.82924 R5 2.82924 0.00000 -0.00001 0.00001 0.00001 2.82924 R6 2.85259 -0.00001 0.00001 -0.00003 -0.00002 2.85257 A1 1.90790 -0.00001 -0.00000 -0.00014 -0.00014 1.90776 A2 2.05470 0.00000 -0.00003 -0.00004 -0.00007 2.05463 A3 2.05470 0.00000 -0.00003 -0.00004 -0.00007 2.05463 A4 1.89106 -0.00120 0.00002 0.00007 0.00009 1.89115 A5 1.89106 -0.00120 0.00002 0.00007 0.00009 1.89115 A6 1.98653 0.00663 -0.00000 0.00000 0.00000 1.98653 A7 1.92785 -0.00013 -0.00001 -0.00003 -0.00004 1.92782 A8 1.88377 -0.00207 -0.00001 -0.00006 -0.00007 1.88369 A9 1.88377 -0.00207 -0.00001 -0.00006 -0.00007 1.88369 D1 0.92362 0.00077 0.00003 0.00014 0.00017 0.92379 D2 3.01568 -0.00076 0.00005 0.00019 0.00023 3.01591 D3 -1.17194 0.00001 0.00004 0.00016 0.00020 -1.17174 D4 -3.01568 0.00076 -0.00005 -0.00019 -0.00023 -3.01591 D5 -0.92362 -0.00077 -0.00003 -0.00014 -0.00017 -0.92379 D6 1.17194 -0.00001 -0.00004 -0.00016 -0.00020 1.17174 Item Value Threshold Converged? Maximum Force 0.000041 0.000450 YES RMS Force 0.000010 0.000300 YES Maximum Displacement 0.000223 0.001800 YES RMS Displacement 0.000101 0.001200 YES Predicted change in Energy=-7.212917D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0194 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0194 -DE/DX = 0.0 ! ! R3 R(1,4) 1.749 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4972 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4972 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5095 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.3145 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.7255 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.7255 -DE/DX = 0.0 ! ! A4 A(1,4,5) 108.3495 -DE/DX = -0.0012 ! ! A5 A(1,4,6) 108.3495 -DE/DX = -0.0012 ! ! A6 A(1,4,7) 113.82 -DE/DX = 0.0066 ! ! A7 A(5,4,6) 110.4578 -DE/DX = -0.0001 ! ! A8 A(5,4,7) 107.932 -DE/DX = -0.0021 ! ! A9 A(6,4,7) 107.932 -DE/DX = -0.0021 ! ! D1 D(2,1,4,5) 52.9195 -DE/DX = 0.0008 ! ! D2 D(2,1,4,6) 172.7857 -DE/DX = -0.0008 ! ! D3 D(2,1,4,7) -67.1474 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -172.7857 -DE/DX = 0.0008 ! ! D5 D(3,1,4,6) -52.9195 -DE/DX = -0.0008 ! ! D6 D(3,1,4,7) 67.1474 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01295769 RMS(Int)= 0.00373676 Iteration 2 RMS(Cart)= 0.00012966 RMS(Int)= 0.00373444 Iteration 3 RMS(Cart)= 0.00000042 RMS(Int)= 0.00373444 Iteration 1 RMS(Cart)= 0.00310300 RMS(Int)= 0.00090034 Iteration 2 RMS(Cart)= 0.00074721 RMS(Int)= 0.00097933 Iteration 3 RMS(Cart)= 0.00018027 RMS(Int)= 0.00101948 Iteration 4 RMS(Cart)= 0.00004351 RMS(Int)= 0.00103019 Iteration 5 RMS(Cart)= 0.00001050 RMS(Int)= 0.00103283 Iteration 6 RMS(Cart)= 0.00000254 RMS(Int)= 0.00103347 Iteration 7 RMS(Cart)= 0.00000061 RMS(Int)= 0.00103363 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028143 0.808038 -0.000000 2 1 0 -1.553996 1.075026 -0.831494 3 1 0 -1.553996 1.075026 0.831494 4 14 0 -0.244982 -0.755725 0.000000 5 1 0 0.604289 -0.847313 -1.229583 6 1 0 0.604289 -0.847313 1.229583 7 1 0 -1.165546 -1.952075 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019405 0.000000 3 H 1.019405 1.662989 0.000000 4 Si 1.748913 2.399281 2.399281 0.000000 5 H 2.629999 2.917543 3.549876 1.497172 0.000000 6 H 2.629999 3.549876 2.917543 1.497172 2.459166 7 H 2.763531 3.163165 3.163165 1.509534 2.421712 6 7 6 H 0.000000 7 H 2.421712 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.023976 1.167884 0.000000 2 1 0 0.326650 1.642083 0.831494 3 1 0 0.326650 1.642083 -0.831494 4 14 0 -0.023976 -0.581029 -0.000000 5 1 0 -0.742326 -1.043223 1.229583 6 1 0 -0.742326 -1.043223 -1.229583 7 1 0 1.334856 -1.238499 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.9023520 12.3687474 11.9793924 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0230259180 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0130419458 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.27D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 -0.000000 Rot= 0.999997 -0.000000 0.000000 0.002244 Ang= 0.26 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.59D-04 Max=2.55D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=5.63D-05 Max=5.82D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.81D-05 Max=3.19D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.31D-06 Max=4.78D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.54D-06 Max=2.49D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.85D-07 Max=6.15D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=8.61D-08 Max=1.12D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.12D-08 Max=1.05D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.09D-09 Max=2.05D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 1.04D-04 DF= -4.55D-13 DXR= 1.04D-04 DFR= 1.08D-08 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.95D-07 Max=3.09D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.40D-07 Max=2.96D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.98D-08 Max=7.41D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.85D-08 Max=2.70D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.23D-09 Max=7.73D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.24D-09 Max=1.12D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.44D-10 Max=1.63D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.93D-11 Max=2.37D-10 NDo= 1 Linear equations converged to 8.814D-11 8.814D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.092181431 a.u. after 3 cycles Convg = 0.6696D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.001218092 -0.000053967 0.000000000 2 1 -0.000115326 0.000092237 -0.000070126 3 1 -0.000115326 0.000092237 0.000070126 4 14 -0.001950316 0.000225741 -0.000000000 5 1 0.000064278 0.000097514 -0.000114376 6 1 0.000064278 0.000097514 0.000114376 7 1 0.000834319 -0.000551275 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.001950316 RMS 0.000554129 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002254105 RMS 0.000577493 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 21 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00945 0.02387 0.05915 0.07567 0.07861 Eigenvalues --- 0.13232 0.16000 0.16000 0.16393 0.16944 Eigenvalues --- 0.17137 0.37147 0.44404 0.461131000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.90217585D-06 EMin= 9.45139313D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00136701 RMS(Int)= 0.00000347 Iteration 2 RMS(Cart)= 0.00000330 RMS(Int)= 0.00000225 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000225 Iteration 1 RMS(Cart)= 0.00000016 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 4.07D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92640 0.00014 0.00000 0.00022 0.00022 1.92661 R2 1.92640 0.00014 0.00000 0.00022 0.00022 1.92661 R3 3.30497 -0.00033 0.00000 -0.00134 -0.00134 3.30362 R4 2.82925 0.00012 0.00000 0.00074 0.00074 2.82999 R5 2.82925 0.00012 0.00000 0.00074 0.00074 2.82999 R6 2.85261 -0.00007 0.00000 -0.00048 -0.00048 2.85213 A1 1.90776 -0.00010 0.00000 -0.00026 -0.00027 1.90749 A2 2.05463 0.00007 0.00000 0.00199 0.00198 2.05661 A3 2.05463 0.00007 0.00000 0.00199 0.00198 2.05661 A4 1.88463 -0.00059 0.00000 -0.00131 -0.00131 1.88333 A5 1.88463 -0.00059 0.00000 -0.00131 -0.00131 1.88333 A6 2.02144 0.00225 0.00000 0.00000 0.00000 2.02144 A7 1.92727 0.00006 0.00000 0.00050 0.00050 1.92776 A8 1.87281 -0.00058 0.00000 0.00109 0.00109 1.87390 A9 1.87281 -0.00058 0.00000 0.00109 0.00109 1.87390 D1 0.92779 0.00029 0.00000 -0.00182 -0.00182 0.92597 D2 3.01191 -0.00029 0.00000 -0.00268 -0.00268 3.00923 D3 -1.17174 -0.00000 0.00000 -0.00225 -0.00225 -1.17399 D4 -3.01191 0.00029 0.00000 0.00268 0.00268 -3.00923 D5 -0.92779 -0.00029 0.00000 0.00182 0.00182 -0.92597 D6 1.17174 0.00000 0.00000 0.00225 0.00225 1.17399 Item Value Threshold Converged? Maximum Force 0.000325 0.000450 YES RMS Force 0.000124 0.000300 YES Maximum Displacement 0.003373 0.001800 NO RMS Displacement 0.001368 0.001200 NO Predicted change in Energy=-9.520929D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.028514 0.806253 -0.000000 2 1 0 -1.553270 1.075785 -0.831508 3 1 0 -1.553270 1.075785 0.831508 4 14 0 -0.245414 -0.756746 0.000000 5 1 0 0.604005 -0.846182 -1.230118 6 1 0 0.604005 -0.846182 1.230118 7 1 0 -1.165627 -1.953048 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019520 0.000000 3 H 1.019520 1.663016 0.000000 4 Si 1.748203 2.400013 2.400013 0.000000 5 H 2.628469 2.916621 3.549379 1.497565 0.000000 6 H 2.628469 3.549379 2.916621 1.497565 2.460235 7 H 2.762706 3.164728 3.164728 1.509282 2.422796 6 7 6 H 0.000000 7 H 2.422796 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.023720 1.167140 0.000000 2 1 0 0.324707 1.643180 0.831508 3 1 0 0.324707 1.643180 -0.831508 4 14 0 -0.023720 -0.581063 -0.000000 5 1 0 -0.743089 -1.041518 1.230118 6 1 0 -0.743089 -1.041518 -1.230118 7 1 0 1.334886 -1.238423 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 66.8806555 12.3759831 11.9853432 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0323255433 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0223411298 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.27D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000061 Ang= -0.01 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=4.67D-05 Max=4.40D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=9.51D-06 Max=7.55D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=6.50D-06 Max=6.61D-05 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.46D-06 Max=2.55D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=7.32D-07 Max=4.87D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.56D-07 Max=9.61D-07 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.65D-08 Max=3.92D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.20D-08 Max=1.19D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.29D-09 Max=1.05D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 2.66D-05 DF= 0.00D+00 DXR= 2.66D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.24D-08 Max=1.32D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.14D-08 Max=1.13D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.26D-09 Max=3.39D-08 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.34D-09 Max=1.33D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.75D-10 Max=2.12D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=3.42D-11 Max=4.18D-10 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=7.39D-12 Max=6.40D-11 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=2.13D-12 Max=1.54D-11 NDo= 1 Linear equations converged to 3.609D-12 3.609D-11 after 7 iterations. SCF Done: E(RB97D3) = -347.092182373 a.u. after 3 cycles Convg = 0.4322D-11 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000871938 0.000365279 0.000000000 2 1 -0.000016317 0.000001993 0.000000801 3 1 -0.000016317 0.000001993 -0.000000801 4 14 -0.001688084 0.000280487 -0.000000000 5 1 0.000001004 -0.000004464 0.000000248 6 1 0.000001004 -0.000004464 -0.000000248 7 1 0.000846773 -0.000640825 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.001688084 RMS 0.000485517 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002294767 RMS 0.000574858 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 21 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -9.42D-07 DEPred=-9.52D-07 R= 9.90D-01 Trust test= 9.90D-01 RLast= 6.96D-03 DXMaxT set to 1.88D-01 ITU= 0 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00960 0.02387 0.05936 0.07865 0.08095 Eigenvalues --- 0.12878 0.16000 0.16000 0.16406 0.16944 Eigenvalues --- 0.17104 0.35391 0.44404 0.461121000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.72943592D-08 EMin= 9.60171193D-03 Quartic linear search produced a step of -0.00949. Iteration 1 RMS(Cart)= 0.00010051 RMS(Int)= 0.00000002 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000002 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 9.20D-14 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92661 0.00001 -0.00000 0.00004 0.00004 1.92665 R2 1.92661 0.00001 -0.00000 0.00004 0.00004 1.92665 R3 3.30362 -0.00005 0.00001 -0.00018 -0.00016 3.30346 R4 2.82999 0.00000 -0.00001 0.00002 0.00002 2.83000 R5 2.82999 0.00000 -0.00001 0.00002 0.00002 2.83000 R6 2.85213 -0.00001 0.00000 -0.00003 -0.00003 2.85210 A1 1.90749 -0.00001 0.00000 -0.00015 -0.00015 1.90734 A2 2.05661 0.00000 -0.00002 0.00002 0.00000 2.05661 A3 2.05661 0.00000 -0.00002 0.00002 0.00000 2.05661 A4 1.88333 -0.00043 0.00001 0.00012 0.00014 1.88346 A5 1.88333 -0.00043 0.00001 0.00012 0.00014 1.88346 A6 2.02144 0.00229 -0.00000 0.00000 0.00000 2.02144 A7 1.92776 -0.00004 -0.00000 -0.00007 -0.00008 1.92769 A8 1.87390 -0.00072 -0.00001 -0.00009 -0.00010 1.87380 A9 1.87390 -0.00072 -0.00001 -0.00009 -0.00010 1.87380 D1 0.92597 0.00027 0.00002 0.00008 0.00010 0.92607 D2 3.00923 -0.00025 0.00003 0.00013 0.00016 3.00939 D3 -1.17399 0.00001 0.00002 0.00010 0.00013 -1.17387 D4 -3.00923 0.00025 -0.00003 -0.00013 -0.00016 -3.00939 D5 -0.92597 -0.00027 -0.00002 -0.00008 -0.00010 -0.92607 D6 1.17399 -0.00001 -0.00002 -0.00010 -0.00013 1.17387 Item Value Threshold Converged? Maximum Force 0.000046 0.000450 YES RMS Force 0.000012 0.000300 YES Maximum Displacement 0.000208 0.001800 YES RMS Displacement 0.000100 0.001200 YES Predicted change in Energy=-9.004353D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0195 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0195 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7482 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4976 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4976 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5093 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.291 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.8349 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.8349 -DE/DX = 0.0 ! ! A4 A(1,4,5) 107.9068 -DE/DX = -0.0004 ! ! A5 A(1,4,6) 107.9068 -DE/DX = -0.0004 ! ! A6 A(1,4,7) 115.82 -DE/DX = 0.0023 ! ! A7 A(5,4,6) 110.4528 -DE/DX = 0.0 ! ! A8 A(5,4,7) 107.3667 -DE/DX = -0.0007 ! ! A9 A(6,4,7) 107.3667 -DE/DX = -0.0007 ! ! D1 D(2,1,4,5) 53.0542 -DE/DX = 0.0003 ! ! D2 D(2,1,4,6) 172.4162 -DE/DX = -0.0003 ! ! D3 D(2,1,4,7) -67.2648 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -172.4162 -DE/DX = 0.0003 ! ! D5 D(3,1,4,6) -53.0542 -DE/DX = -0.0003 ! ! D6 D(3,1,4,7) 67.2648 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01286838 RMS(Int)= 0.00374588 Iteration 2 RMS(Cart)= 0.00012833 RMS(Int)= 0.00374362 Iteration 3 RMS(Cart)= 0.00000039 RMS(Int)= 0.00374362 Iteration 1 RMS(Cart)= 0.00309673 RMS(Int)= 0.00090664 Iteration 2 RMS(Cart)= 0.00074910 RMS(Int)= 0.00098641 Iteration 3 RMS(Cart)= 0.00018153 RMS(Int)= 0.00102714 Iteration 4 RMS(Cart)= 0.00004401 RMS(Int)= 0.00103806 Iteration 5 RMS(Cart)= 0.00001067 RMS(Int)= 0.00104077 Iteration 6 RMS(Cart)= 0.00000259 RMS(Int)= 0.00104143 Iteration 7 RMS(Cart)= 0.00000063 RMS(Int)= 0.00104159 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.026063 0.811076 -0.000000 2 1 0 -1.548553 1.085134 -0.831480 3 1 0 -1.548553 1.085134 0.831480 4 14 0 -0.256661 -0.758617 0.000000 5 1 0 0.593493 -0.844228 -1.229892 6 1 0 0.593493 -0.844228 1.229892 7 1 0 -1.145240 -1.978606 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019540 0.000000 3 H 1.019540 1.662960 0.000000 4 Si 1.748118 2.399950 2.399950 0.000000 5 H 2.622142 2.910245 3.544016 1.497573 0.000000 6 H 2.622142 3.544016 2.910245 1.497573 2.459785 7 H 2.792226 3.200081 3.200081 1.509286 2.413015 6 7 6 H 0.000000 7 H 2.413015 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.022328 1.168169 0.000000 2 1 0 0.326211 1.644218 0.831480 3 1 0 0.326211 1.644218 -0.831480 4 14 0 -0.022328 -0.579949 -0.000000 5 1 0 -0.748029 -1.031002 1.229892 6 1 0 -0.748029 -1.031002 -1.229892 7 1 0 1.312513 -1.284326 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 67.2747648 12.3662644 11.9643648 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0257178977 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0157421345 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.28D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 0.999997 -0.000000 0.000000 0.002260 Ang= 0.26 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.59D-04 Max=2.53D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=5.24D-05 Max=5.40D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.80D-05 Max=3.37D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.32D-06 Max=4.91D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.53D-06 Max=2.45D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.93D-07 Max=6.12D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=9.03D-08 Max=1.16D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.15D-08 Max=1.13D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.00D-09 Max=1.88D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 8.12D-05 DF= -3.41D-13 DXR= 8.12D-05 DFR= 8.06D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.84D-07 Max=2.81D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.39D-07 Max=2.89D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.01D-07 Max=7.20D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.89D-08 Max=2.70D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.78D-09 Max=8.38D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.31D-09 Max=1.14D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.48D-10 Max=1.75D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.89D-11 Max=2.34D-10 NDo= 1 Linear equations converged to 8.651D-11 8.651D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.092189748 a.u. after 3 cycles Convg = 0.6619D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.000320052 -0.000718465 -0.000000000 2 1 -0.000116720 0.000087476 -0.000068075 3 1 -0.000116720 0.000087476 0.000068075 4 14 0.001165573 -0.000228550 0.000000000 5 1 0.000064143 0.000091328 -0.000117996 6 1 0.000064143 0.000091328 0.000117996 7 1 -0.000740367 0.000589407 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.001165573 RMS 0.000379821 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001950339 RMS 0.000500678 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 22 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00957 0.02387 0.05955 0.07654 0.07960 Eigenvalues --- 0.12887 0.16000 0.16000 0.16402 0.16944 Eigenvalues --- 0.17109 0.35420 0.44404 0.461121000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.47975900D-06 EMin= 9.57272808D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00107708 RMS(Int)= 0.00000163 Iteration 2 RMS(Cart)= 0.00000175 RMS(Int)= 0.00000092 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000092 Iteration 1 RMS(Cart)= 0.00000016 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 7.52D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92665 0.00014 0.00000 0.00026 0.00026 1.92691 R2 1.92665 0.00014 0.00000 0.00026 0.00026 1.92691 R3 3.30346 -0.00024 0.00000 -0.00090 -0.00090 3.30256 R4 2.83000 0.00013 0.00000 0.00075 0.00075 2.83075 R5 2.83000 0.00013 0.00000 0.00075 0.00075 2.83075 R6 2.85214 -0.00004 0.00000 -0.00029 -0.00029 2.85184 A1 1.90734 -0.00010 0.00000 -0.00056 -0.00056 1.90678 A2 2.05661 0.00007 0.00000 0.00137 0.00137 2.05798 A3 2.05661 0.00007 0.00000 0.00137 0.00137 2.05798 A4 1.87674 0.00022 0.00000 -0.00127 -0.00127 1.87547 A5 1.87674 0.00022 0.00000 -0.00127 -0.00127 1.87547 A6 2.05635 -0.00195 0.00000 0.00000 0.00000 2.05635 A7 1.92722 0.00012 0.00000 0.00053 0.00053 1.92775 A8 1.86295 0.00073 0.00000 0.00105 0.00105 1.86399 A9 1.86295 0.00073 0.00000 0.00105 0.00105 1.86399 D1 0.93000 -0.00019 0.00000 -0.00089 -0.00089 0.92912 D2 3.00545 0.00019 0.00000 -0.00162 -0.00162 3.00383 D3 -1.17387 0.00000 0.00000 -0.00125 -0.00125 -1.17512 D4 -3.00545 -0.00019 0.00000 0.00162 0.00162 -3.00383 D5 -0.93000 0.00019 0.00000 0.00089 0.00089 -0.92912 D6 1.17387 -0.00000 0.00000 0.00125 0.00125 1.17512 Item Value Threshold Converged? Maximum Force 0.000244 0.000450 YES RMS Force 0.000110 0.000300 YES Maximum Displacement 0.002436 0.001800 NO RMS Displacement 0.001078 0.001200 YES Predicted change in Energy=-7.390484D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.026103 0.809787 -0.000000 2 1 0 -1.548033 1.085579 -0.831428 3 1 0 -1.548033 1.085579 0.831428 4 14 0 -0.256968 -0.759507 0.000000 5 1 0 0.593277 -0.843218 -1.230442 6 1 0 0.593277 -0.843218 1.230442 7 1 0 -1.145501 -1.979337 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019679 0.000000 3 H 1.019679 1.662857 0.000000 4 Si 1.747642 2.400513 2.400513 0.000000 5 H 2.620840 2.909412 3.543554 1.497969 0.000000 6 H 2.620840 3.543554 2.909412 1.497969 2.460885 7 H 2.791679 3.201096 3.201096 1.509131 2.414146 6 7 6 H 0.000000 7 H 2.414146 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.022154 1.167625 -0.000000 2 1 0 0.325137 1.644972 0.831428 3 1 0 0.325137 1.644972 -0.831428 4 14 0 -0.022154 -0.580017 0.000000 5 1 0 -0.748791 -1.029377 1.230442 6 1 0 -0.748791 -1.029377 -1.230442 7 1 0 1.312548 -1.284321 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 67.2436643 12.3712936 11.9686090 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0306711623 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0206950192 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.28D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 1.000000 0.000000 0.000000 -0.000003 Ang= -0.00 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.08D-05 Max=2.94D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=5.66D-06 Max=3.48D-05 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.62D-06 Max=1.46D-05 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.06D-06 Max=1.17D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.88D-07 Max=3.13D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.12D-07 Max=7.20D-07 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.49D-08 Max=2.93D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.48D-09 Max=8.94D-08 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=8.40D-10 Max=6.22D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 1.67D-05 DF= 0.00D+00 DXR= 1.67D-05 DFR= 0.00D+00 which will be used. SCF Done: E(RB97D3) = -347.092190484 a.u. after 2 cycles Convg = 0.1369D-06 11 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.000640877 -0.000379212 -0.000000000 2 1 -0.000015072 0.000003174 0.000001336 3 1 -0.000015072 0.000003174 -0.000001336 4 14 0.001382870 -0.000146071 0.000000000 5 1 0.000000275 -0.000004651 0.000000644 6 1 0.000000275 -0.000004651 -0.000000644 7 1 -0.000712398 0.000528236 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.001382870 RMS 0.000394924 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001921043 RMS 0.000481592 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 22 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -7.35D-07 DEPred=-7.39D-07 R= 9.95D-01 Trust test= 9.95D-01 RLast= 4.68D-03 DXMaxT set to 1.88D-01 ITU= 0 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00963 0.02387 0.05965 0.07658 0.08573 Eigenvalues --- 0.12399 0.16000 0.16000 0.16427 0.16944 Eigenvalues --- 0.17135 0.33991 0.44404 0.461171000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.46153046D-08 EMin= 9.62793540D-03 Quartic linear search produced a step of -0.00575. Iteration 1 RMS(Cart)= 0.00008476 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 3.47D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92691 0.00001 -0.00000 0.00004 0.00003 1.92695 R2 1.92691 0.00001 -0.00000 0.00004 0.00003 1.92695 R3 3.30256 -0.00004 0.00001 -0.00017 -0.00017 3.30240 R4 2.83075 -0.00000 -0.00000 0.00002 0.00002 2.83077 R5 2.83075 -0.00000 -0.00000 0.00002 0.00002 2.83077 R6 2.85184 -0.00001 0.00000 -0.00003 -0.00003 2.85181 A1 1.90678 -0.00001 0.00000 -0.00015 -0.00015 1.90663 A2 2.05798 0.00000 -0.00001 0.00004 0.00003 2.05801 A3 2.05798 0.00000 -0.00001 0.00004 0.00003 2.05801 A4 1.87547 0.00038 0.00001 0.00011 0.00012 1.87559 A5 1.87547 0.00038 0.00001 0.00011 0.00012 1.87559 A6 2.05635 -0.00192 -0.00000 0.00000 0.00000 2.05635 A7 1.92775 0.00002 -0.00000 -0.00006 -0.00007 1.92768 A8 1.86399 0.00059 -0.00001 -0.00009 -0.00009 1.86390 A9 1.86399 0.00059 -0.00001 -0.00009 -0.00009 1.86390 D1 0.92912 -0.00021 0.00001 0.00005 0.00006 0.92917 D2 3.00383 0.00022 0.00001 0.00010 0.00011 3.00393 D3 -1.17512 0.00000 0.00001 0.00007 0.00008 -1.17504 D4 -3.00383 -0.00022 -0.00001 -0.00010 -0.00011 -3.00393 D5 -0.92912 0.00021 -0.00001 -0.00005 -0.00006 -0.92917 D6 1.17512 -0.00000 -0.00001 -0.00007 -0.00008 1.17504 Item Value Threshold Converged? Maximum Force 0.000040 0.000450 YES RMS Force 0.000011 0.000300 YES Maximum Displacement 0.000167 0.001800 YES RMS Displacement 0.000085 0.001200 YES Predicted change in Energy=-7.101953D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0197 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0197 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7476 -DE/DX = 0.0 ! ! R4 R(4,5) 1.498 -DE/DX = 0.0 ! ! R5 R(4,6) 1.498 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5091 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.2504 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.9133 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.9133 -DE/DX = 0.0 ! ! A4 A(1,4,5) 107.4564 -DE/DX = 0.0004 ! ! A5 A(1,4,6) 107.4564 -DE/DX = 0.0004 ! ! A6 A(1,4,7) 117.82 -DE/DX = -0.0019 ! ! A7 A(5,4,6) 110.4517 -DE/DX = 0.0 ! ! A8 A(5,4,7) 106.799 -DE/DX = 0.0006 ! ! A9 A(6,4,7) 106.799 -DE/DX = 0.0006 ! ! D1 D(2,1,4,5) 53.2344 -DE/DX = -0.0002 ! ! D2 D(2,1,4,6) 172.1066 -DE/DX = 0.0002 ! ! D3 D(2,1,4,7) -67.3295 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -172.1066 -DE/DX = -0.0002 ! ! D5 D(3,1,4,6) -53.2344 -DE/DX = 0.0002 ! ! D6 D(3,1,4,7) 67.3295 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01278382 RMS(Int)= 0.00375352 Iteration 2 RMS(Cart)= 0.00012714 RMS(Int)= 0.00375131 Iteration 3 RMS(Cart)= 0.00000037 RMS(Int)= 0.00375131 Iteration 1 RMS(Cart)= 0.00308901 RMS(Int)= 0.00091192 Iteration 2 RMS(Cart)= 0.00075007 RMS(Int)= 0.00099234 Iteration 3 RMS(Cart)= 0.00018243 RMS(Int)= 0.00103357 Iteration 4 RMS(Cart)= 0.00004439 RMS(Int)= 0.00104467 Iteration 5 RMS(Cart)= 0.00001080 RMS(Int)= 0.00104743 Iteration 6 RMS(Cart)= 0.00000263 RMS(Int)= 0.00104810 Iteration 7 RMS(Cart)= 0.00000064 RMS(Int)= 0.00104827 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.023635 0.814369 -0.000000 2 1 0 -1.543197 1.094750 -0.831400 3 1 0 -1.543197 1.094750 0.831400 4 14 0 -0.268377 -0.761556 0.000000 5 1 0 0.582545 -0.841240 -1.230254 6 1 0 0.582545 -0.841240 1.230254 7 1 0 -1.124767 -2.004167 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019698 0.000000 3 H 1.019698 1.662800 0.000000 4 Si 1.747557 2.400471 2.400471 0.000000 5 H 2.614265 2.902744 3.537973 1.497979 0.000000 6 H 2.614265 3.537973 2.902744 1.497979 2.460508 7 H 2.820349 3.235675 3.235675 1.509134 2.404337 6 7 6 H 0.000000 7 H 2.404337 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.020700 1.168591 0.000000 2 1 0 0.326660 1.645979 0.831400 3 1 0 0.326660 1.645979 -0.831400 4 14 0 -0.020700 -0.578966 -0.000000 5 1 0 -0.753613 -1.018575 1.230254 6 1 0 -0.753613 -1.018575 -1.230254 7 1 0 1.288612 -1.329422 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 67.6723320 12.3621664 11.9471881 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0252370024 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0152682257 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.28D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 0.999997 -0.000000 0.000000 0.002281 Ang= 0.26 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.60D-04 Max=2.50D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=4.76D-05 Max=4.90D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.78D-05 Max=3.54D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.33D-06 Max=4.99D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.51D-06 Max=2.40D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.02D-07 Max=6.07D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=9.50D-08 Max=1.18D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.27D-08 Max=1.24D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.31D-09 Max=1.99D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Minimum is close to point 2 DX= 5.96D-05 DF= -5.68D-14 DXR= 5.96D-05 DFR= 1.33D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.80D-07 Max=2.82D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.38D-07 Max=2.71D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.02D-07 Max=7.30D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.95D-08 Max=2.62D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=7.33D-09 Max=8.97D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.39D-09 Max=1.21D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.53D-10 Max=1.93D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=3.94D-11 Max=2.50D-10 NDo= 1 Linear equations converged to 8.620D-11 8.620D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.092006503 a.u. after 3 cycles Convg = 0.6631D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1457. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.001834471 -0.001349415 -0.000000000 2 1 -0.000118485 0.000084747 -0.000067718 3 1 -0.000118485 0.000084747 0.000067718 4 14 0.004273526 -0.000606542 0.000000000 5 1 0.000064493 0.000083014 -0.000122009 6 1 0.000064493 0.000083014 0.000122009 7 1 -0.002331070 0.001620435 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.004273526 RMS 0.001234047 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.006041029 RMS 0.001518563 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 23 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00959 0.02387 0.05982 0.07442 0.08453 Eigenvalues --- 0.12412 0.16000 0.16000 0.16423 0.16944 Eigenvalues --- 0.17140 0.34019 0.44404 0.461171000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.19688379D-06 EMin= 9.59370391D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00087040 RMS(Int)= 0.00000085 Iteration 2 RMS(Cart)= 0.00000097 RMS(Int)= 0.00000040 Iteration 1 RMS(Cart)= 0.00000016 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 1.79D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92695 0.00014 0.00000 0.00030 0.00030 1.92725 R2 1.92695 0.00014 0.00000 0.00030 0.00030 1.92725 R3 3.30240 -0.00017 0.00000 -0.00056 -0.00056 3.30185 R4 2.83077 0.00013 0.00000 0.00076 0.00076 2.83154 R5 2.83077 0.00013 0.00000 0.00076 0.00076 2.83154 R6 2.85185 -0.00001 0.00000 -0.00013 -0.00013 2.85172 A1 1.90663 -0.00010 0.00000 -0.00079 -0.00079 1.90584 A2 2.05801 0.00006 0.00000 0.00092 0.00092 2.05893 A3 2.05801 0.00006 0.00000 0.00092 0.00092 2.05893 A4 1.86865 0.00107 0.00000 -0.00118 -0.00118 1.86747 A5 1.86865 0.00107 0.00000 -0.00118 -0.00118 1.86747 A6 2.09125 -0.00604 0.00000 0.00000 0.00000 2.09125 A7 1.92729 0.00016 0.00000 0.00054 0.00054 1.92782 A8 1.85308 0.00198 0.00000 0.00096 0.00096 1.85404 A9 1.85308 0.00198 0.00000 0.00096 0.00096 1.85404 D1 0.93304 -0.00064 0.00000 -0.00021 -0.00021 0.93283 D2 3.00007 0.00065 0.00000 -0.00080 -0.00080 2.99927 D3 -1.17504 0.00000 0.00000 -0.00050 -0.00050 -1.17554 D4 -3.00007 -0.00065 0.00000 0.00080 0.00080 -2.99927 D5 -0.93304 0.00064 0.00000 0.00021 0.00021 -0.93283 D6 1.17504 -0.00000 0.00000 0.00050 0.00050 1.17554 Item Value Threshold Converged? Maximum Force 0.000169 0.000450 YES RMS Force 0.000099 0.000300 YES Maximum Displacement 0.001696 0.001800 YES RMS Displacement 0.000871 0.001200 YES Predicted change in Energy=-5.957345D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0197 -DE/DX = 0.0001 ! ! R2 R(1,3) 1.0197 -DE/DX = 0.0001 ! ! R3 R(1,4) 1.7476 -DE/DX = -0.0002 ! ! R4 R(4,5) 1.498 -DE/DX = 0.0001 ! ! R5 R(4,6) 1.498 -DE/DX = 0.0001 ! ! R6 R(4,7) 1.5091 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.2419 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 117.9153 -DE/DX = 0.0001 ! ! A3 A(3,1,4) 117.9153 -DE/DX = 0.0001 ! ! A4 A(1,4,5) 107.0657 -DE/DX = 0.0011 ! ! A5 A(1,4,6) 107.0657 -DE/DX = 0.0011 ! ! A6 A(1,4,7) 119.82 -DE/DX = -0.006 ! ! A7 A(5,4,6) 110.4254 -DE/DX = 0.0002 ! ! A8 A(5,4,7) 106.1737 -DE/DX = 0.002 ! ! A9 A(6,4,7) 106.1737 -DE/DX = 0.002 ! ! D1 D(2,1,4,5) 53.4592 -DE/DX = -0.0006 ! ! D2 D(2,1,4,6) 171.8912 -DE/DX = 0.0006 ! ! D3 D(2,1,4,7) -67.3248 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -171.8912 -DE/DX = -0.0006 ! ! D5 D(3,1,4,6) -53.4592 -DE/DX = 0.0006 ! ! D6 D(3,1,4,7) 67.3248 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01270424 RMS(Int)= 0.00375966 Iteration 2 RMS(Cart)= 0.00012610 RMS(Int)= 0.00375750 Iteration 3 RMS(Cart)= 0.00000034 RMS(Int)= 0.00375750 Iteration 1 RMS(Cart)= 0.00307977 RMS(Int)= 0.00091611 Iteration 2 RMS(Cart)= 0.00075007 RMS(Int)= 0.00099705 Iteration 3 RMS(Cart)= 0.00018295 RMS(Int)= 0.00103867 Iteration 4 RMS(Cart)= 0.00004464 RMS(Int)= 0.00104991 Iteration 5 RMS(Cart)= 0.00001089 RMS(Int)= 0.00105271 Iteration 6 RMS(Cart)= 0.00000266 RMS(Int)= 0.00105340 Iteration 7 RMS(Cart)= 0.00000065 RMS(Int)= 0.00105357 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.020961 0.817836 -0.000000 2 1 0 -1.537862 1.103960 -0.831299 3 1 0 -1.537862 1.103960 0.831299 4 14 0 -0.280140 -0.764605 0.000000 5 1 0 0.571424 -0.838298 -1.230676 6 1 0 0.571424 -0.838298 1.230676 7 1 0 -1.104107 -2.028890 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.019859 0.000000 3 H 1.019859 1.662597 0.000000 4 Si 1.747265 2.400929 2.400929 0.000000 5 H 2.606344 2.894988 3.531741 1.498384 0.000000 6 H 2.606344 3.531741 2.894988 1.498384 2.461353 7 H 2.847940 3.270161 3.270161 1.509086 2.395721 6 7 6 H 0.000000 7 H 2.395721 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.019075 1.169161 0.000000 2 1 0 0.327752 1.647455 0.831299 3 1 0 0.327752 1.647455 -0.831299 4 14 0 -0.019075 -0.578104 -0.000000 5 1 0 -0.759064 -1.005899 1.230676 6 1 0 -0.759064 -1.005899 -1.230676 7 1 0 1.263208 -1.373773 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 68.0937358 12.3560621 11.9274712 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0208457267 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0108828432 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.29D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 0.999997 -0.000000 -0.000000 0.002340 Ang= 0.27 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.72D-04 Max=2.59D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=3.92D-05 Max=4.05D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.87D-05 Max=3.99D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.42D-06 Max=5.48D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.92D-06 Max=2.89D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.65D-07 Max=6.76D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.19D-07 Max=1.34D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.63D-08 Max=3.13D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.35D-09 Max=3.78D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=7.22D-10 Max=5.53D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Minimum is close to point 2 DX= 3.24D-05 DF= 0.00D+00 DXR= 3.24D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=3.98D-07 Max=3.14D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.46D-07 Max=2.47D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.07D-07 Max=7.30D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.19D-08 Max=2.55D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.24D-09 Max=9.87D-08 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.56D-09 Max=1.33D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.81D-10 Max=2.32D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.37D-11 Max=2.73D-10 NDo= 1 Linear equations converged to 9.046D-11 9.046D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.091636439 a.u. after 3 cycles Convg = 0.6907D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.003289287 -0.001984294 -0.000000000 2 1 -0.000133258 0.000090144 -0.000072273 3 1 -0.000133258 0.000090144 0.000072273 4 14 0.007353389 -0.000881730 0.000000000 5 1 0.000067137 0.000068451 -0.000128119 6 1 0.000067137 0.000068451 0.000128119 7 1 -0.003931858 0.002548833 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.007353389 RMS 0.002089385 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.010029672 RMS 0.002518906 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 24 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00956 0.02387 0.06001 0.07226 0.08335 Eigenvalues --- 0.12425 0.16000 0.16000 0.16420 0.16944 Eigenvalues --- 0.17145 0.34049 0.44404 0.461161000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.02149430D-06 EMin= 9.56015109D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00072566 RMS(Int)= 0.00000055 Iteration 2 RMS(Cart)= 0.00000062 RMS(Int)= 0.00000025 Iteration 1 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 1.20D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92725 0.00015 0.00000 0.00035 0.00035 1.92760 R2 1.92725 0.00015 0.00000 0.00035 0.00035 1.92760 R3 3.30185 -0.00013 0.00000 -0.00033 -0.00033 3.30152 R4 2.83154 0.00014 0.00000 0.00081 0.00081 2.83235 R5 2.83154 0.00014 0.00000 0.00081 0.00081 2.83235 R6 2.85176 0.00001 0.00000 0.00004 0.00004 2.85180 A1 1.90584 -0.00011 0.00000 -0.00094 -0.00094 1.90491 A2 2.05893 0.00007 0.00000 0.00067 0.00067 2.05960 A3 2.05893 0.00007 0.00000 0.00067 0.00067 2.05960 A4 1.86033 0.00195 0.00000 -0.00103 -0.00103 1.85930 A5 1.86033 0.00195 0.00000 -0.00103 -0.00103 1.85930 A6 2.12616 -0.01003 0.00000 0.00000 0.00000 2.12616 A7 1.92750 0.00018 0.00000 0.00051 0.00051 1.92800 A8 1.84326 0.00319 0.00000 0.00083 0.00083 1.84409 A9 1.84326 0.00319 0.00000 0.00083 0.00083 1.84409 D1 0.93662 -0.00106 0.00000 0.00016 0.00016 0.93678 D2 2.99548 0.00107 0.00000 -0.00028 -0.00028 2.99521 D3 -1.17554 0.00001 0.00000 -0.00006 -0.00006 -1.17560 D4 -2.99548 -0.00107 0.00000 0.00028 0.00028 -2.99521 D5 -0.93662 0.00106 0.00000 -0.00016 -0.00016 -0.93678 D6 1.17554 -0.00001 0.00000 0.00006 0.00006 1.17560 Item Value Threshold Converged? Maximum Force 0.000152 0.000450 YES RMS Force 0.000094 0.000300 YES Maximum Displacement 0.001343 0.001800 YES RMS Displacement 0.000726 0.001200 YES Predicted change in Energy=-5.061849D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0199 -DE/DX = 0.0002 ! ! R2 R(1,3) 1.0199 -DE/DX = 0.0002 ! ! R3 R(1,4) 1.7473 -DE/DX = -0.0001 ! ! R4 R(4,5) 1.4984 -DE/DX = 0.0001 ! ! R5 R(4,6) 1.4984 -DE/DX = 0.0001 ! ! R6 R(4,7) 1.5091 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.1968 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 117.9681 -DE/DX = 0.0001 ! ! A3 A(3,1,4) 117.9681 -DE/DX = 0.0001 ! ! A4 A(1,4,5) 106.589 -DE/DX = 0.0019 ! ! A5 A(1,4,6) 106.589 -DE/DX = 0.0019 ! ! A6 A(1,4,7) 121.82 -DE/DX = -0.01 ! ! A7 A(5,4,6) 110.4374 -DE/DX = 0.0002 ! ! A8 A(5,4,7) 105.6109 -DE/DX = 0.0032 ! ! A9 A(6,4,7) 105.6109 -DE/DX = 0.0032 ! ! D1 D(2,1,4,5) 53.6644 -DE/DX = -0.0011 ! ! D2 D(2,1,4,6) 171.6286 -DE/DX = 0.0011 ! ! D3 D(2,1,4,7) -67.3535 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -171.6286 -DE/DX = -0.0011 ! ! D5 D(3,1,4,6) -53.6644 -DE/DX = 0.0011 ! ! D6 D(3,1,4,7) 67.3535 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01262768 RMS(Int)= 0.00376495 Iteration 2 RMS(Cart)= 0.00012516 RMS(Int)= 0.00376283 Iteration 3 RMS(Cart)= 0.00000032 RMS(Int)= 0.00376283 Iteration 1 RMS(Cart)= 0.00306992 RMS(Int)= 0.00091975 Iteration 2 RMS(Cart)= 0.00074960 RMS(Int)= 0.00100114 Iteration 3 RMS(Cart)= 0.00018329 RMS(Int)= 0.00104310 Iteration 4 RMS(Cart)= 0.00004483 RMS(Int)= 0.00105446 Iteration 5 RMS(Cart)= 0.00001097 RMS(Int)= 0.00105730 Iteration 6 RMS(Cart)= 0.00000268 RMS(Int)= 0.00105800 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00105817 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.018140 0.821349 -0.000000 2 1 0 -1.532578 1.112886 -0.831172 3 1 0 -1.532578 1.112886 0.831172 4 14 0 -0.291968 -0.767677 0.000000 5 1 0 0.560177 -0.835508 -1.231133 6 1 0 0.560177 -0.835508 1.231133 7 1 0 -1.083176 -2.052762 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020042 0.000000 3 H 1.020042 1.662343 0.000000 4 Si 1.747091 2.401349 2.401349 0.000000 5 H 2.598451 2.887184 3.525474 1.498813 0.000000 6 H 2.598451 3.525474 2.887184 1.498813 2.462266 7 H 2.874846 3.303655 3.303655 1.509123 2.387050 6 7 6 H 0.000000 7 H 2.387050 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.017442 1.169781 0.000000 2 1 0 0.329277 1.648766 0.831172 3 1 0 0.329277 1.648766 -0.831172 4 14 0 -0.017442 -0.577310 -0.000000 5 1 0 -0.764297 -0.993195 1.231133 6 1 0 -0.764297 -0.993195 -1.231133 7 1 0 1.236323 -1.417266 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 68.5433019 12.3491616 11.9063360 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0147292544 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 64.0047712736 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.30D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 0.999997 0.000000 -0.000000 0.002377 Ang= 0.27 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.71D-04 Max=2.51D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=3.24D-05 Max=3.31D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.65D-05 Max=3.65D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.08D-06 Max=5.34D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.77D-06 Max=2.65D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.58D-07 Max=6.46D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.19D-07 Max=1.27D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.57D-08 Max=2.79D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.32D-09 Max=3.72D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=8.32D-10 Max=6.87D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 2 and 3. Minimum is close to point 2 DX= 4.18D-06 DF= 0.00D+00 DXR= 4.18D-06 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.04D-07 Max=3.26D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.46D-07 Max=2.19D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.10D-07 Max=7.45D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.25D-08 Max=2.31D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.63D-09 Max=1.01D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.63D-09 Max=1.39D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.85D-10 Max=2.47D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.58D-11 Max=2.89D-10 NDo= 1 Linear equations converged to 9.149D-11 9.149D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.091083916 a.u. after 3 cycles Convg = 0.7071D-10 20 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.004733268 -0.002551320 -0.000000000 2 1 -0.000143545 0.000091901 -0.000071447 3 1 -0.000143545 0.000091901 0.000071447 4 14 0.010434120 -0.001128130 0.000000000 5 1 0.000066113 0.000060304 -0.000133386 6 1 0.000066113 0.000060304 0.000133386 7 1 -0.005545988 0.003375041 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.010434120 RMS 0.002938459 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.013920228 RMS 0.003496175 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 25 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00953 0.02387 0.06020 0.07005 0.08223 Eigenvalues --- 0.12437 0.16000 0.16000 0.16417 0.16944 Eigenvalues --- 0.17150 0.34077 0.44404 0.461161000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-9.72532386D-07 EMin= 9.52652036D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00069446 RMS(Int)= 0.00000050 Iteration 2 RMS(Cart)= 0.00000053 RMS(Int)= 0.00000025 Iteration 1 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 1.35D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92760 0.00016 0.00000 0.00037 0.00037 1.92797 R2 1.92760 0.00016 0.00000 0.00037 0.00037 1.92797 R3 3.30152 -0.00007 0.00000 0.00012 0.00012 3.30164 R4 2.83235 0.00014 0.00000 0.00081 0.00081 2.83316 R5 2.83235 0.00014 0.00000 0.00081 0.00081 2.83316 R6 2.85183 0.00003 0.00000 0.00020 0.00020 2.85203 A1 1.90491 -0.00011 0.00000 -0.00109 -0.00109 1.90381 A2 2.05960 0.00007 0.00000 0.00023 0.00023 2.05983 A3 2.05960 0.00007 0.00000 0.00023 0.00023 2.05983 A4 1.85196 0.00284 0.00000 -0.00107 -0.00107 1.85089 A5 1.85196 0.00284 0.00000 -0.00107 -0.00107 1.85089 A6 2.16107 -0.01392 0.00000 0.00000 0.00000 2.16107 A7 1.92774 0.00019 0.00000 0.00062 0.00062 1.92836 A8 1.83334 0.00437 0.00000 0.00083 0.00083 1.83418 A9 1.83334 0.00437 0.00000 0.00083 0.00083 1.83418 D1 0.94049 -0.00145 0.00000 0.00079 0.00079 0.94128 D2 2.99150 0.00147 0.00000 0.00048 0.00048 2.99199 D3 -1.17560 0.00001 0.00000 0.00064 0.00064 -1.17496 D4 -2.99150 -0.00147 0.00000 -0.00048 -0.00048 -2.99199 D5 -0.94049 0.00145 0.00000 -0.00079 -0.00079 -0.94128 D6 1.17560 -0.00001 0.00000 -0.00064 -0.00064 1.17496 Item Value Threshold Converged? Maximum Force 0.000157 0.000450 YES RMS Force 0.000090 0.000300 YES Maximum Displacement 0.001236 0.001800 YES RMS Displacement 0.000695 0.001200 YES Predicted change in Energy=-4.797233D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.02 -DE/DX = 0.0002 ! ! R2 R(1,3) 1.02 -DE/DX = 0.0002 ! ! R3 R(1,4) 1.7471 -DE/DX = -0.0001 ! ! R4 R(4,5) 1.4988 -DE/DX = 0.0001 ! ! R5 R(4,6) 1.4988 -DE/DX = 0.0001 ! ! R6 R(4,7) 1.5091 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.1431 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 118.0066 -DE/DX = 0.0001 ! ! A3 A(3,1,4) 118.0066 -DE/DX = 0.0001 ! ! A4 A(1,4,5) 106.1096 -DE/DX = 0.0028 ! ! A5 A(1,4,6) 106.1096 -DE/DX = 0.0028 ! ! A6 A(1,4,7) 123.82 -DE/DX = -0.0139 ! ! A7 A(5,4,6) 110.4514 -DE/DX = 0.0002 ! ! A8 A(5,4,7) 105.0429 -DE/DX = 0.0044 ! ! A9 A(6,4,7) 105.0429 -DE/DX = 0.0044 ! ! D1 D(2,1,4,5) 53.8859 -DE/DX = -0.0014 ! ! D2 D(2,1,4,6) 171.4005 -DE/DX = 0.0015 ! ! D3 D(2,1,4,7) -67.3568 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -171.4005 -DE/DX = -0.0015 ! ! D5 D(3,1,4,6) -53.8859 -DE/DX = 0.0014 ! ! D6 D(3,1,4,7) 67.3568 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01255557 RMS(Int)= 0.00376888 Iteration 2 RMS(Cart)= 0.00012436 RMS(Int)= 0.00376680 Iteration 3 RMS(Cart)= 0.00000030 RMS(Int)= 0.00376680 Iteration 1 RMS(Cart)= 0.00305888 RMS(Int)= 0.00092243 Iteration 2 RMS(Cart)= 0.00074832 RMS(Int)= 0.00100415 Iteration 3 RMS(Cart)= 0.00018330 RMS(Int)= 0.00104636 Iteration 4 RMS(Cart)= 0.00004491 RMS(Int)= 0.00105781 Iteration 5 RMS(Cart)= 0.00001101 RMS(Int)= 0.00106068 Iteration 6 RMS(Cart)= 0.00000270 RMS(Int)= 0.00106139 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00106156 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.015034 0.825003 -0.000000 2 1 0 -1.527334 1.121418 -0.831007 3 1 0 -1.527334 1.121418 0.831007 4 14 0 -0.303825 -0.770846 0.000000 5 1 0 0.548760 -0.832769 -1.231663 6 1 0 0.548760 -0.832769 1.231663 7 1 0 -1.062080 -2.075789 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020238 0.000000 3 H 1.020238 1.662013 0.000000 4 Si 1.747156 2.401710 2.401710 0.000000 5 H 2.590493 2.879156 3.519037 1.499243 0.000000 6 H 2.590493 3.519037 2.879156 1.499243 2.463326 7 H 2.901174 3.336040 3.336040 1.509247 2.378424 6 7 6 H 0.000000 7 H 2.378424 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.015817 1.170523 0.000000 2 1 0 0.331456 1.649808 0.831007 3 1 0 0.331456 1.649808 -0.831007 4 14 0 -0.015817 -0.576633 -0.000000 5 1 0 -0.769360 -0.980252 1.231663 6 1 0 -0.769360 -0.980252 -1.231663 7 1 0 1.207971 -1.459905 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 69.0136546 12.3406046 11.8831594 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 64.0051895238 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9952354045 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.30D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 0.999997 -0.000000 -0.000000 0.002438 Ang= 0.28 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.71D-04 Max=2.80D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.33D-05 Max=2.25D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.15D-05 Max=2.71D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.51D-06 Max=4.91D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.50D-06 Max=2.21D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.40D-07 Max=6.52D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.18D-07 Max=1.12D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.48D-08 Max=2.39D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.19D-09 Max=4.20D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=9.27D-10 Max=8.25D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -1.41D-05 DF= 0.00D+00 DXR= 1.41D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.20D-07 Max=3.37D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.51D-07 Max=2.31D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.15D-07 Max=7.84D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.35D-08 Max=2.02D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.99D-09 Max=1.02D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.72D-09 Max=1.45D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.91D-10 Max=2.62D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=4.87D-11 Max=3.20D-10 NDo= 1 Linear equations converged to 9.435D-11 9.435D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.090353364 a.u. after 3 cycles Convg = 0.7297D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.006139479 -0.003111237 -0.000000000 2 1 -0.000158669 0.000100393 -0.000074618 3 1 -0.000158669 0.000100393 0.000074618 4 14 0.013481002 -0.001283955 0.000000000 5 1 0.000068377 0.000046794 -0.000140250 6 1 0.000068377 0.000046794 0.000140250 7 1 -0.007160937 0.004100820 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.013481002 RMS 0.003773273 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.017715070 RMS 0.004450002 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 26 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00949 0.02387 0.06041 0.06781 0.08116 Eigenvalues --- 0.12449 0.16000 0.16000 0.16415 0.16944 Eigenvalues --- 0.17155 0.34104 0.44404 0.461151000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-9.57223018D-07 EMin= 9.49256442D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00064183 RMS(Int)= 0.00000041 Iteration 2 RMS(Cart)= 0.00000044 RMS(Int)= 0.00000020 Iteration 1 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 5.70D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92797 0.00017 0.00000 0.00041 0.00041 1.92838 R2 1.92797 0.00017 0.00000 0.00041 0.00041 1.92838 R3 3.30165 -0.00003 0.00000 0.00026 0.00026 3.30191 R4 2.83316 0.00015 0.00000 0.00086 0.00086 2.83402 R5 2.83316 0.00015 0.00000 0.00086 0.00086 2.83402 R6 2.85206 0.00005 0.00000 0.00033 0.00033 2.85239 A1 1.90381 -0.00013 0.00000 -0.00125 -0.00125 1.90256 A2 2.05984 0.00007 0.00000 0.00009 0.00009 2.05992 A3 2.05984 0.00007 0.00000 0.00009 0.00009 2.05992 A4 1.84337 0.00375 0.00000 -0.00092 -0.00092 1.84246 A5 1.84337 0.00375 0.00000 -0.00092 -0.00092 1.84246 A6 2.19597 -0.01772 0.00000 0.00000 0.00000 2.19597 A7 1.92816 0.00018 0.00000 0.00060 0.00060 1.92875 A8 1.82347 0.00550 0.00000 0.00070 0.00070 1.82417 A9 1.82347 0.00550 0.00000 0.00070 0.00070 1.82417 D1 0.94489 -0.00180 0.00000 0.00103 0.00103 0.94593 D2 2.98837 0.00183 0.00000 0.00087 0.00087 2.98924 D3 -1.17496 0.00001 0.00000 0.00095 0.00095 -1.17401 D4 -2.98837 -0.00183 0.00000 -0.00087 -0.00087 -2.98924 D5 -0.94489 0.00180 0.00000 -0.00103 -0.00103 -0.94593 D6 1.17496 -0.00001 0.00000 -0.00095 -0.00095 1.17401 Item Value Threshold Converged? Maximum Force 0.000170 0.000450 YES RMS Force 0.000091 0.000300 YES Maximum Displacement 0.001191 0.001800 YES RMS Displacement 0.000642 0.001200 YES Predicted change in Energy=-4.702280D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0202 -DE/DX = 0.0002 ! ! R2 R(1,3) 1.0202 -DE/DX = 0.0002 ! ! R3 R(1,4) 1.7472 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4992 -DE/DX = 0.0002 ! ! R5 R(4,6) 1.4992 -DE/DX = 0.0002 ! ! R6 R(4,7) 1.5092 -DE/DX = 0.0001 ! ! A1 A(2,1,3) 109.0804 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 118.0199 -DE/DX = 0.0001 ! ! A3 A(3,1,4) 118.0199 -DE/DX = 0.0001 ! ! A4 A(1,4,5) 105.6176 -DE/DX = 0.0038 ! ! A5 A(1,4,6) 105.6176 -DE/DX = 0.0038 ! ! A6 A(1,4,7) 125.82 -DE/DX = -0.0177 ! ! A7 A(5,4,6) 110.4752 -DE/DX = 0.0002 ! ! A8 A(5,4,7) 104.4772 -DE/DX = 0.0055 ! ! A9 A(6,4,7) 104.4772 -DE/DX = 0.0055 ! ! D1 D(2,1,4,5) 54.1385 -DE/DX = -0.0018 ! ! D2 D(2,1,4,6) 171.2211 -DE/DX = 0.0018 ! ! D3 D(2,1,4,7) -67.3202 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -171.2211 -DE/DX = -0.0018 ! ! D5 D(3,1,4,6) -54.1385 -DE/DX = 0.0018 ! ! D6 D(3,1,4,7) 67.3202 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01248614 RMS(Int)= 0.00377217 Iteration 2 RMS(Cart)= 0.00012364 RMS(Int)= 0.00377013 Iteration 3 RMS(Cart)= 0.00000028 RMS(Int)= 0.00377013 Iteration 1 RMS(Cart)= 0.00304740 RMS(Int)= 0.00092466 Iteration 2 RMS(Cart)= 0.00074667 RMS(Int)= 0.00100665 Iteration 3 RMS(Cart)= 0.00018316 RMS(Int)= 0.00104907 Iteration 4 RMS(Cart)= 0.00004494 RMS(Int)= 0.00106060 Iteration 5 RMS(Cart)= 0.00001103 RMS(Int)= 0.00106349 Iteration 6 RMS(Cart)= 0.00000271 RMS(Int)= 0.00106420 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00106437 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.011816 0.828623 -0.000000 2 1 0 -1.522125 1.129721 -0.830813 3 1 0 -1.522125 1.129721 0.830813 4 14 0 -0.315750 -0.774043 0.000000 5 1 0 0.537220 -0.830182 -1.232230 6 1 0 0.537220 -0.830182 1.232230 7 1 0 -1.040708 -2.097992 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020454 0.000000 3 H 1.020454 1.661627 0.000000 4 Si 1.747297 2.402064 2.402064 0.000000 5 H 2.582545 2.871107 3.512587 1.499700 0.000000 6 H 2.582545 3.512587 2.871107 1.499700 2.464460 7 H 2.926758 3.367513 3.367513 1.509438 2.369723 6 7 6 H 0.000000 7 H 2.369723 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.014177 1.171279 0.000000 2 1 0 0.333945 1.650744 0.830813 3 1 0 0.333945 1.650744 -0.830813 4 14 0 -0.014177 -0.576018 -0.000000 5 1 0 -0.774180 -0.967305 1.232230 6 1 0 -0.774180 -0.967305 -1.232230 7 1 0 1.178190 -1.501579 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 69.5100631 12.3316373 11.8590641 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9945721913 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9846210194 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.31D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 0.999997 -0.000000 -0.000000 0.002464 Ang= 0.28 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.72D-04 Max=3.01D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.90D-05 Max=1.58D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.58D-05 Max=1.63D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.24D-06 Max=4.62D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.39D-06 Max=2.02D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.36D-07 Max=6.82D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.23D-07 Max=1.13D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.65D-08 Max=2.37D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.42D-09 Max=4.52D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.03D-09 Max=9.33D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -2.71D-05 DF= -5.68D-14 DXR= 2.71D-05 DFR= 1.26D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.31D-07 Max=3.53D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.55D-07 Max=2.48D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.20D-07 Max=8.01D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.50D-08 Max=2.21D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.37D-09 Max=1.04D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.81D-09 Max=1.52D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.01D-10 Max=2.78D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=5.23D-11 Max=3.77D-10 NDo= 1 Linear equations converged to 9.615D-11 9.615D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.089448970 a.u. after 3 cycles Convg = 0.7605D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.007544066 -0.003593634 -0.000000000 2 1 -0.000166579 0.000103863 -0.000074024 3 1 -0.000166579 0.000103863 0.000074024 4 14 0.016531791 -0.001414922 0.000000000 5 1 0.000066758 0.000040634 -0.000146545 6 1 0.000066758 0.000040634 0.000146545 7 1 -0.008788083 0.004719563 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.016531791 RMS 0.004602158 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.021422597 RMS 0.005382279 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 27 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00946 0.02387 0.06063 0.06554 0.08016 Eigenvalues --- 0.12461 0.16000 0.16000 0.16414 0.16944 Eigenvalues --- 0.17160 0.34130 0.44404 0.461151000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.07506268D-06 EMin= 9.45890453D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00074973 RMS(Int)= 0.00000076 Iteration 2 RMS(Cart)= 0.00000072 RMS(Int)= 0.00000049 Iteration 1 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 9.31D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92838 0.00017 0.00000 0.00042 0.00042 1.92880 R2 1.92838 0.00017 0.00000 0.00042 0.00042 1.92880 R3 3.30191 0.00003 0.00000 0.00070 0.00070 3.30261 R4 2.83402 0.00016 0.00000 0.00086 0.00086 2.83489 R5 2.83402 0.00016 0.00000 0.00086 0.00086 2.83489 R6 2.85242 0.00008 0.00000 0.00053 0.00053 2.85295 A1 1.90256 -0.00013 0.00000 -0.00138 -0.00138 1.90118 A2 2.05992 0.00008 0.00000 -0.00030 -0.00030 2.05962 A3 2.05992 0.00008 0.00000 -0.00030 -0.00030 2.05962 A4 1.83476 0.00468 0.00000 -0.00099 -0.00099 1.83377 A5 1.83476 0.00468 0.00000 -0.00099 -0.00099 1.83377 A6 2.23088 -0.02142 0.00000 0.00000 0.00000 2.23088 A7 1.92860 0.00017 0.00000 0.00075 0.00075 1.92935 A8 1.81350 0.00660 0.00000 0.00072 0.00072 1.81423 A9 1.81350 0.00660 0.00000 0.00072 0.00072 1.81423 D1 0.94945 -0.00213 0.00000 0.00157 0.00157 0.95102 D2 2.98572 0.00216 0.00000 0.00155 0.00155 2.98727 D3 -1.17401 0.00002 0.00000 0.00156 0.00156 -1.17245 D4 -2.98572 -0.00216 0.00000 -0.00155 -0.00155 -2.98727 D5 -0.94945 0.00213 0.00000 -0.00157 -0.00157 -0.95102 D6 1.17401 -0.00002 0.00000 -0.00156 -0.00156 1.17245 Item Value Threshold Converged? Maximum Force 0.000174 0.000450 YES RMS Force 0.000093 0.000300 YES Maximum Displacement 0.001630 0.001800 YES RMS Displacement 0.000750 0.001200 YES Predicted change in Energy=-5.270853D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0205 -DE/DX = 0.0002 ! ! R2 R(1,3) 1.0205 -DE/DX = 0.0002 ! ! R3 R(1,4) 1.7473 -DE/DX = 0.0 ! ! R4 R(4,5) 1.4997 -DE/DX = 0.0002 ! ! R5 R(4,6) 1.4997 -DE/DX = 0.0002 ! ! R6 R(4,7) 1.5094 -DE/DX = 0.0001 ! ! A1 A(2,1,3) 109.0089 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 118.0249 -DE/DX = 0.0001 ! ! A3 A(3,1,4) 118.0249 -DE/DX = 0.0001 ! ! A4 A(1,4,5) 105.1241 -DE/DX = 0.0047 ! ! A5 A(1,4,6) 105.1241 -DE/DX = 0.0047 ! ! A6 A(1,4,7) 127.82 -DE/DX = -0.0214 ! ! A7 A(5,4,6) 110.5008 -DE/DX = 0.0002 ! ! A8 A(5,4,7) 103.9062 -DE/DX = 0.0066 ! ! A9 A(6,4,7) 103.9062 -DE/DX = 0.0066 ! ! D1 D(2,1,4,5) 54.3994 -DE/DX = -0.0021 ! ! D2 D(2,1,4,6) 171.0693 -DE/DX = 0.0022 ! ! D3 D(2,1,4,7) -67.2656 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -171.0693 -DE/DX = -0.0022 ! ! D5 D(3,1,4,6) -54.3994 -DE/DX = 0.0021 ! ! D6 D(3,1,4,7) 67.2656 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01242123 RMS(Int)= 0.00377416 Iteration 2 RMS(Cart)= 0.00012305 RMS(Int)= 0.00377215 Iteration 3 RMS(Cart)= 0.00000026 RMS(Int)= 0.00377215 Iteration 1 RMS(Cart)= 0.00303489 RMS(Int)= 0.00092596 Iteration 2 RMS(Cart)= 0.00074427 RMS(Int)= 0.00100810 Iteration 3 RMS(Cart)= 0.00018272 RMS(Int)= 0.00105064 Iteration 4 RMS(Cart)= 0.00004487 RMS(Int)= 0.00106221 Iteration 5 RMS(Cart)= 0.00001102 RMS(Int)= 0.00106511 Iteration 6 RMS(Cart)= 0.00000271 RMS(Int)= 0.00106583 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00106601 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.008321 0.832335 -0.000000 2 1 0 -1.516933 1.137661 -0.830586 3 1 0 -1.516933 1.137661 0.830586 4 14 0 -0.327697 -0.777354 0.000000 5 1 0 0.525499 -0.827612 -1.232884 6 1 0 0.525499 -0.827612 1.232884 7 1 0 -1.019198 -2.119415 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020678 0.000000 3 H 1.020678 1.661173 0.000000 4 Si 1.747670 2.402382 2.402382 0.000000 5 H 2.574496 2.862808 3.505958 1.500157 0.000000 6 H 2.574496 3.505958 2.862808 1.500157 2.465768 7 H 2.951771 3.397964 3.397964 1.509736 2.361112 6 7 6 H 0.000000 7 H 2.361112 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.012544 1.172143 0.000000 2 1 0 0.337005 1.651441 0.830586 3 1 0 0.337005 1.651441 -0.830586 4 14 0 -0.012544 -0.575527 -0.000000 5 1 0 -0.778806 -0.954091 1.232884 6 1 0 -0.778806 -0.954091 -1.232884 7 1 0 1.147025 -1.542328 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 70.0227300 12.3210992 11.8331674 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9805213973 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9705722169 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.32D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 0.999997 0.000000 0.000000 0.002519 Ang= 0.29 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.74D-04 Max=3.28D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.66D-05 Max=1.78D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.00D-06 Max=3.46D-05 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.53D-06 Max=2.14D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.65D-06 Max=1.32D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.15D-07 Max=7.34D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.26D-07 Max=1.30D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.66D-08 Max=2.03D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.36D-09 Max=4.69D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.10D-09 Max=1.00D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -4.53D-05 DF= -1.14D-13 DXR= 4.53D-05 DFR= 2.53D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.54D-07 Max=3.97D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.68D-07 Max=2.68D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.28D-07 Max=8.66D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.73D-08 Max=2.93D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=9.79D-09 Max=1.04D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.92D-09 Max=1.61D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.13D-10 Max=2.90D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=5.63D-11 Max=4.33D-10 NDo= 1 Linear equations converged to 1.001D-10 1.001D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.088374672 a.u. after 3 cycles Convg = 0.7977D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.008911552 -0.004076898 -0.000000000 2 1 -0.000179881 0.000116237 -0.000079467 3 1 -0.000179881 0.000116237 0.000079467 4 14 0.019543370 -0.001448203 0.000000000 5 1 0.000069098 0.000026932 -0.000154446 6 1 0.000069098 0.000026932 0.000154446 7 1 -0.010410253 0.005238764 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.019543370 RMS 0.005416283 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.025046637 RMS 0.006293434 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 28 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00943 0.02387 0.06085 0.06326 0.07920 Eigenvalues --- 0.12474 0.16000 0.16000 0.16413 0.16944 Eigenvalues --- 0.17165 0.34154 0.44404 0.461141000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.15012033D-06 EMin= 9.42537599D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00073431 RMS(Int)= 0.00000080 Iteration 2 RMS(Cart)= 0.00000071 RMS(Int)= 0.00000052 Iteration 1 RMS(Cart)= 0.00000017 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 6.22D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92880 0.00019 0.00000 0.00046 0.00046 1.92926 R2 1.92880 0.00019 0.00000 0.00046 0.00046 1.92926 R3 3.30262 0.00007 0.00000 0.00075 0.00075 3.30337 R4 2.83489 0.00017 0.00000 0.00093 0.00093 2.83581 R5 2.83489 0.00017 0.00000 0.00093 0.00093 2.83581 R6 2.85299 0.00011 0.00000 0.00072 0.00072 2.85370 A1 1.90118 -0.00015 0.00000 -0.00150 -0.00150 1.89968 A2 2.05962 0.00008 0.00000 -0.00031 -0.00031 2.05931 A3 2.05962 0.00008 0.00000 -0.00031 -0.00031 2.05931 A4 1.82590 0.00562 0.00000 -0.00081 -0.00081 1.82509 A5 1.82590 0.00562 0.00000 -0.00081 -0.00081 1.82509 A6 2.26579 -0.02505 0.00000 0.00000 0.00000 2.26579 A7 1.92925 0.00015 0.00000 0.00073 0.00073 1.92999 A8 1.80361 0.00766 0.00000 0.00056 0.00056 1.80417 A9 1.80361 0.00766 0.00000 0.00056 0.00056 1.80417 D1 0.95444 -0.00242 0.00000 0.00160 0.00160 0.95604 D2 2.98385 0.00246 0.00000 0.00173 0.00173 2.98558 D3 -1.17245 0.00002 0.00000 0.00167 0.00167 -1.17078 D4 -2.98385 -0.00246 0.00000 -0.00173 -0.00173 -2.98558 D5 -0.95444 0.00242 0.00000 -0.00160 -0.00160 -0.95604 D6 1.17245 -0.00002 0.00000 -0.00167 -0.00167 1.17078 Item Value Threshold Converged? Maximum Force 0.000189 0.000450 YES RMS Force 0.000099 0.000300 YES Maximum Displacement 0.001626 0.001800 YES RMS Displacement 0.000734 0.001200 YES Predicted change in Energy=-5.628700D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0207 -DE/DX = 0.0002 ! ! R2 R(1,3) 1.0207 -DE/DX = 0.0002 ! ! R3 R(1,4) 1.7477 -DE/DX = 0.0001 ! ! R4 R(4,5) 1.5002 -DE/DX = 0.0002 ! ! R5 R(4,6) 1.5002 -DE/DX = 0.0002 ! ! R6 R(4,7) 1.5097 -DE/DX = 0.0001 ! ! A1 A(2,1,3) 108.9297 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 118.0075 -DE/DX = 0.0001 ! ! A3 A(3,1,4) 118.0075 -DE/DX = 0.0001 ! ! A4 A(1,4,5) 104.6166 -DE/DX = 0.0056 ! ! A5 A(1,4,6) 104.6166 -DE/DX = 0.0056 ! ! A6 A(1,4,7) 129.82 -DE/DX = -0.025 ! ! A7 A(5,4,6) 110.5381 -DE/DX = 0.0001 ! ! A8 A(5,4,7) 103.3393 -DE/DX = 0.0077 ! ! A9 A(6,4,7) 103.3393 -DE/DX = 0.0077 ! ! D1 D(2,1,4,5) 54.6853 -DE/DX = -0.0024 ! ! D2 D(2,1,4,6) 170.9618 -DE/DX = 0.0025 ! ! D3 D(2,1,4,7) -67.1764 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -170.9618 -DE/DX = -0.0025 ! ! D5 D(3,1,4,6) -54.6853 -DE/DX = 0.0024 ! ! D6 D(3,1,4,7) 67.1764 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01235878 RMS(Int)= 0.00377571 Iteration 2 RMS(Cart)= 0.00012253 RMS(Int)= 0.00377372 Iteration 3 RMS(Cart)= 0.00000025 RMS(Int)= 0.00377372 Iteration 1 RMS(Cart)= 0.00302226 RMS(Int)= 0.00092695 Iteration 2 RMS(Cart)= 0.00074168 RMS(Int)= 0.00100921 Iteration 3 RMS(Cart)= 0.00018219 RMS(Int)= 0.00105184 Iteration 4 RMS(Cart)= 0.00004477 RMS(Int)= 0.00106343 Iteration 5 RMS(Cart)= 0.00001100 RMS(Int)= 0.00106635 Iteration 6 RMS(Cart)= 0.00000270 RMS(Int)= 0.00106707 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00106725 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.004788 0.835924 -0.000000 2 1 0 -1.511750 1.145451 -0.830340 3 1 0 -1.511750 1.145451 0.830340 4 14 0 -0.339717 -0.780686 0.000000 5 1 0 0.513659 -0.825196 -1.233577 6 1 0 0.513659 -0.825196 1.233577 7 1 0 -0.997397 -2.140083 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.020923 0.000000 3 H 1.020923 1.660680 0.000000 4 Si 1.748070 2.402735 2.402735 0.000000 5 H 2.566459 2.854529 3.499355 1.500647 0.000000 6 H 2.566459 3.499355 2.854529 1.500647 2.467154 7 H 2.976016 3.427647 3.427647 1.510134 2.352430 6 7 6 H 0.000000 7 H 2.352430 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.010886 1.172983 -0.000000 2 1 0 0.340188 1.652112 0.830340 3 1 0 0.340188 1.652112 -0.830340 4 14 0 -0.010886 -0.575087 0.000000 5 1 0 -0.783151 -0.940926 1.233577 6 1 0 -0.783151 -0.940926 -1.233577 7 1 0 1.114531 -1.582033 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 70.5587403 12.3105236 11.8068207 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9659306615 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9559826832 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.32D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 0.999997 0.000000 -0.000000 0.002528 Ang= 0.29 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.75D-04 Max=3.44D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.86D-05 Max=2.13D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.12D-05 Max=1.02D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=6.22D-06 Max=5.45D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.05D-06 Max=1.67D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.12D-07 Max=7.42D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.34D-07 Max=1.46D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=2.89D-08 Max=2.11D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=5.76D-09 Max=4.96D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.20D-09 Max=1.09D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -5.85D-05 DF= -1.71D-13 DXR= 5.85D-05 DFR= 3.78D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.68D-07 Max=4.47D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.76D-07 Max=2.84D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.35D-07 Max=9.07D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.94D-08 Max=3.59D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.02D-08 Max=1.05D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.02D-09 Max=1.70D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.26D-10 Max=2.98D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=5.96D-11 Max=4.74D-10 NDo= 1 Linear equations converged to 1.020D-10 1.020D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.087134542 a.u. after 3 cycles Convg = 0.8340D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.010283892 -0.004468920 -0.000000000 2 1 -0.000183768 0.000120747 -0.000079997 3 1 -0.000183768 0.000120747 0.000079997 4 14 0.022548800 -0.001476734 0.000000000 5 1 0.000065739 0.000022492 -0.000161227 6 1 0.000065739 0.000022492 0.000161227 7 1 -0.012028850 0.005659175 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.022548800 RMS 0.006223035 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.028582362 RMS 0.007182421 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 29 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00939 0.02387 0.06096 0.06108 0.07831 Eigenvalues --- 0.12486 0.16000 0.16000 0.16412 0.16944 Eigenvalues --- 0.17170 0.34178 0.44404 0.461141000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.37665649D-06 EMin= 9.39268497D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00088311 RMS(Int)= 0.00000148 Iteration 2 RMS(Cart)= 0.00000123 RMS(Int)= 0.00000101 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000101 Iteration 1 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 3.47D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92926 0.00019 0.00000 0.00046 0.00046 1.92973 R2 1.92926 0.00019 0.00000 0.00046 0.00046 1.92973 R3 3.30337 0.00014 0.00000 0.00119 0.00119 3.30457 R4 2.83581 0.00017 0.00000 0.00092 0.00092 2.83673 R5 2.83581 0.00017 0.00000 0.00092 0.00092 2.83673 R6 2.85374 0.00014 0.00000 0.00094 0.00094 2.85468 A1 1.89968 -0.00015 0.00000 -0.00158 -0.00158 1.89810 A2 2.05931 0.00009 0.00000 -0.00065 -0.00065 2.05866 A3 2.05931 0.00009 0.00000 -0.00065 -0.00065 2.05866 A4 1.81707 0.00656 0.00000 -0.00092 -0.00092 1.81614 A5 1.81707 0.00656 0.00000 -0.00092 -0.00092 1.81614 A6 2.30069 -0.02858 0.00000 0.00000 0.00000 2.30069 A7 1.92993 0.00013 0.00000 0.00095 0.00094 1.93088 A8 1.79360 0.00869 0.00000 0.00061 0.00061 1.79421 A9 1.79360 0.00869 0.00000 0.00061 0.00061 1.79421 D1 0.95936 -0.00269 0.00000 0.00200 0.00199 0.96135 D2 2.98226 0.00272 0.00000 0.00230 0.00230 2.98456 D3 -1.17078 0.00002 0.00000 0.00215 0.00215 -1.16864 D4 -2.98226 -0.00272 0.00000 -0.00230 -0.00230 -2.98456 D5 -0.95936 0.00269 0.00000 -0.00200 -0.00199 -0.96135 D6 1.17078 -0.00002 0.00000 -0.00215 -0.00215 1.16864 Item Value Threshold Converged? Maximum Force 0.000193 0.000450 YES RMS Force 0.000107 0.000300 YES Maximum Displacement 0.002011 0.001800 NO RMS Displacement 0.000883 0.001200 YES Predicted change in Energy=-6.739623D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.003724 0.836543 -0.000000 2 1 0 -1.512161 1.145184 -0.830070 3 1 0 -1.512161 1.145184 0.830070 4 14 0 -0.339384 -0.781050 0.000000 5 1 0 0.513721 -0.824847 -1.234379 6 1 0 0.513721 -0.824847 1.234379 7 1 0 -0.998097 -2.140501 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021168 0.000000 3 H 1.021168 1.660140 0.000000 4 Si 1.748701 2.403081 2.403081 0.000000 5 H 2.566427 2.854590 3.499595 1.501132 0.000000 6 H 2.566427 3.499595 2.854590 1.501132 2.468758 7 H 2.977049 3.427681 3.427681 1.510632 2.353769 6 7 6 H 0.000000 7 H 2.353769 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.011035 1.173350 -0.000000 2 1 0 0.342028 1.652008 0.830070 3 1 0 0.342028 1.652008 -0.830070 4 14 0 -0.011035 -0.575351 0.000000 5 1 0 -0.783540 -0.939963 1.234379 6 1 0 -0.783540 -0.939963 -1.234379 7 1 0 1.114754 -1.582629 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 70.4873013 12.3037791 11.8009163 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9470630315 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9371162205 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.32D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 1.000000 0.000000 -0.000000 0.000162 Ang= 0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.59D-05 Max=4.15D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.02D-05 Max=1.75D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=8.71D-06 Max=9.36D-05 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.52D-06 Max=1.62D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.37D-07 Max=5.40D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=9.74D-08 Max=5.81D-07 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.71D-08 Max=2.21D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.54D-09 Max=5.93D-08 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.14D-09 Max=8.23D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -2.73D-05 DF= 0.00D+00 DXR= 2.73D-05 DFR= 0.00D+00 which will be used. SCF Done: E(RB97D3) = -347.087135156 a.u. after 2 cycles Convg = 0.2299D-06 10 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.010476368 -0.004524472 -0.000000000 2 1 -0.000056997 0.000051247 -0.000009710 3 1 -0.000056997 0.000051247 0.000009710 4 14 0.022512079 -0.001320110 0.000000000 5 1 -0.000005209 -0.000027542 0.000002493 6 1 -0.000005209 -0.000027542 -0.000002493 7 1 -0.011911297 0.005797172 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.022512079 RMS 0.006226905 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.028566329 RMS 0.007175724 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 29 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -6.13D-07 DEPred=-6.74D-07 R= 9.10D-01 Trust test= 9.10D-01 RLast= 6.23D-03 DXMaxT set to 1.88D-01 ITU= 0 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01135 0.02387 0.06095 0.06099 0.07730 Eigenvalues --- 0.10683 0.16000 0.16000 0.16681 0.16944 Eigenvalues --- 0.18382 0.34916 0.43836 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.80391558D-07 EMin= 1.13463587D-02 Quartic linear search produced a step of -0.08285. Iteration 1 RMS(Cart)= 0.00051359 RMS(Int)= 0.00000037 Iteration 2 RMS(Cart)= 0.00000030 RMS(Int)= 0.00000023 Iteration 1 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 9.30D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92973 0.00005 -0.00004 0.00026 0.00022 1.92995 R2 1.92973 0.00005 -0.00004 0.00026 0.00022 1.92995 R3 3.30457 -0.00007 -0.00010 -0.00069 -0.00079 3.30378 R4 2.83673 -0.00000 -0.00008 0.00036 0.00028 2.83701 R5 2.83673 -0.00000 -0.00008 0.00036 0.00028 2.83701 R6 2.85468 -0.00002 -0.00008 0.00009 0.00001 2.85469 A1 1.89810 -0.00007 0.00013 -0.00080 -0.00067 1.89743 A2 2.05866 0.00005 0.00005 0.00092 0.00097 2.05963 A3 2.05866 0.00005 0.00005 0.00092 0.00097 2.05963 A4 1.81614 0.00664 0.00008 0.00047 0.00055 1.81669 A5 1.81614 0.00664 0.00008 0.00047 0.00055 1.81669 A6 2.30069 -0.02857 -0.00000 0.00000 0.00000 2.30069 A7 1.93088 0.00006 -0.00008 -0.00012 -0.00019 1.93068 A8 1.79421 0.00860 -0.00005 -0.00044 -0.00049 1.79372 A9 1.79421 0.00860 -0.00005 -0.00044 -0.00049 1.79372 D1 0.96135 -0.00269 -0.00017 -0.00060 -0.00076 0.96059 D2 2.98456 0.00269 -0.00019 -0.00035 -0.00054 2.98402 D3 -1.16864 0.00000 -0.00018 -0.00047 -0.00065 -1.16929 D4 -2.98456 -0.00269 0.00019 0.00035 0.00054 -2.98402 D5 -0.96135 0.00269 0.00017 0.00060 0.00076 -0.96059 D6 1.16864 -0.00000 0.00018 0.00047 0.00065 1.16929 Item Value Threshold Converged? Maximum Force 0.000070 0.000450 YES RMS Force 0.000036 0.000300 YES Maximum Displacement 0.001047 0.001800 YES RMS Displacement 0.000514 0.001200 YES Predicted change in Energy=-1.378665D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0212 -DE/DX = 0.0001 ! ! R2 R(1,3) 1.0212 -DE/DX = 0.0001 ! ! R3 R(1,4) 1.7487 -DE/DX = -0.0001 ! ! R4 R(4,5) 1.5011 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5011 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5106 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.7533 -DE/DX = -0.0001 ! ! A2 A(2,1,4) 117.9523 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.9523 -DE/DX = 0.0 ! ! A4 A(1,4,5) 104.0572 -DE/DX = 0.0066 ! ! A5 A(1,4,6) 104.0572 -DE/DX = 0.0066 ! ! A6 A(1,4,7) 131.82 -DE/DX = -0.0286 ! ! A7 A(5,4,6) 110.6311 -DE/DX = 0.0001 ! ! A8 A(5,4,7) 102.8004 -DE/DX = 0.0086 ! ! A9 A(6,4,7) 102.8004 -DE/DX = 0.0086 ! ! D1 D(2,1,4,5) 55.0814 -DE/DX = -0.0027 ! ! D2 D(2,1,4,6) 171.0027 -DE/DX = 0.0027 ! ! D3 D(2,1,4,7) -66.9579 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -171.0027 -DE/DX = -0.0027 ! ! D5 D(3,1,4,6) -55.0814 -DE/DX = 0.0027 ! ! D6 D(3,1,4,7) 66.9579 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01229824 RMS(Int)= 0.00377718 Iteration 2 RMS(Cart)= 0.00012207 RMS(Int)= 0.00377522 Iteration 3 RMS(Cart)= 0.00000023 RMS(Int)= 0.00377522 Iteration 1 RMS(Cart)= 0.00301012 RMS(Int)= 0.00092794 Iteration 2 RMS(Cart)= 0.00073920 RMS(Int)= 0.00101031 Iteration 3 RMS(Cart)= 0.00018169 RMS(Int)= 0.00105303 Iteration 4 RMS(Cart)= 0.00004467 RMS(Int)= 0.00106466 Iteration 5 RMS(Cart)= 0.00001098 RMS(Int)= 0.00106758 Iteration 6 RMS(Cart)= 0.00000270 RMS(Int)= 0.00106830 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00106848 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -1.001360 0.839140 -0.000000 2 1 0 -1.506711 1.153466 -0.829965 3 1 0 -1.506711 1.153466 0.829965 4 14 0 -0.351770 -0.783986 0.000000 5 1 0 0.501767 -0.823181 -1.234415 6 1 0 0.501767 -0.823181 1.234415 7 1 0 -0.975067 -2.160060 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021284 0.000000 3 H 1.021284 1.659929 0.000000 4 Si 1.748286 2.403425 2.403425 0.000000 5 H 2.558610 2.846876 3.493248 1.501280 0.000000 6 H 2.558610 3.493248 2.846876 1.501280 2.468829 7 H 2.999315 3.457014 3.457014 1.510655 2.343515 6 7 6 H 0.000000 7 H 2.343515 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.009192 1.173643 -0.000000 2 1 0 0.343190 1.653234 0.829965 3 1 0 0.343190 1.653234 -0.829965 4 14 0 -0.009192 -0.574643 0.000000 5 1 0 -0.787061 -0.928172 1.234415 6 1 0 -0.787061 -0.928172 -1.234415 7 1 0 1.080774 -1.620613 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 71.1224598 12.3009386 11.7807895 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9518652485 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9419182348 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.33D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999997 -0.000000 0.000000 0.002333 Ang= 0.27 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.74D-04 Max=3.11D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.37D-05 Max=2.08D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.10D-05 Max=2.20D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.82D-06 Max=5.95D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.98D-06 Max=2.93D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.31D-07 Max=7.12D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.74D-07 Max=1.78D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.12D-08 Max=3.71D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=7.27D-09 Max=5.36D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.53D-09 Max=1.24D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -3.20D-05 DF= -5.68D-14 DXR= 3.20D-05 DFR= 1.22D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.31D-07 Max=4.26D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.57D-07 Max=2.89D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.31D-07 Max=9.05D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.91D-08 Max=3.30D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.07D-08 Max=1.13D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.08D-09 Max=1.80D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.41D-10 Max=3.27D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.24D-11 Max=4.80D-10 NDo= 1 Linear equations converged to 9.398D-11 9.398D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.085732883 a.u. after 3 cycles Convg = 0.8726D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.011801598 -0.004584159 -0.000000000 2 1 -0.000105812 0.000051007 -0.000045000 3 1 -0.000105812 0.000051007 0.000045000 4 14 0.025584718 -0.001609471 0.000000000 5 1 0.000038700 0.000050296 -0.000137004 6 1 0.000038700 0.000050296 0.000137004 7 1 -0.013648896 0.005991025 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.025584718 RMS 0.007036376 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.032031132 RMS 0.008049615 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 30 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01135 0.02387 0.05865 0.06127 0.07667 Eigenvalues --- 0.10697 0.16000 0.16000 0.16685 0.16944 Eigenvalues --- 0.18386 0.34932 0.43835 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.72033445D-06 EMin= 1.13455461D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00108518 RMS(Int)= 0.00000307 Iteration 2 RMS(Cart)= 0.00000241 RMS(Int)= 0.00000216 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000216 Iteration 1 RMS(Cart)= 0.00000019 RMS(Int)= 0.00000006 ClnCor: largest displacement from symmetrization is 1.69D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92995 0.00010 0.00000 0.00032 0.00032 1.93027 R2 1.92995 0.00010 0.00000 0.00032 0.00032 1.93027 R3 3.30378 0.00030 0.00000 0.00187 0.00187 3.30565 R4 2.83701 0.00013 0.00000 0.00051 0.00051 2.83751 R5 2.83701 0.00013 0.00000 0.00051 0.00051 2.83751 R6 2.85472 0.00017 0.00000 0.00094 0.00094 2.85566 A1 1.89743 -0.00007 0.00000 -0.00141 -0.00142 1.89601 A2 2.05963 0.00003 0.00000 -0.00130 -0.00130 2.05833 A3 2.05963 0.00003 0.00000 -0.00130 -0.00130 2.05833 A4 1.80851 0.00745 0.00000 -0.00115 -0.00115 1.80736 A5 1.80851 0.00745 0.00000 -0.00115 -0.00115 1.80736 A6 2.33560 -0.03203 0.00000 0.00000 0.00000 2.33560 A7 1.93068 0.00012 0.00000 0.00130 0.00130 1.93198 A8 1.78319 0.00972 0.00000 0.00073 0.00073 1.78392 A9 1.78319 0.00972 0.00000 0.00073 0.00073 1.78392 D1 0.96381 -0.00291 0.00000 0.00255 0.00254 0.96635 D2 2.98081 0.00295 0.00000 0.00309 0.00309 2.98390 D3 -1.16929 0.00002 0.00000 0.00282 0.00282 -1.16647 D4 -2.98081 -0.00295 0.00000 -0.00309 -0.00309 -2.98390 D5 -0.96381 0.00291 0.00000 -0.00255 -0.00254 -0.96635 D6 1.16929 -0.00002 0.00000 -0.00282 -0.00282 1.16647 Item Value Threshold Converged? Maximum Force 0.000302 0.000450 YES RMS Force 0.000106 0.000300 YES Maximum Displacement 0.002610 0.001800 NO RMS Displacement 0.001086 0.001200 YES Predicted change in Energy=-8.430143D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.999979 0.840163 -0.000000 2 1 0 -1.507135 1.152884 -0.829681 3 1 0 -1.507135 1.152884 0.829681 4 14 0 -0.351279 -0.784382 0.000000 5 1 0 0.501644 -0.822729 -1.235191 6 1 0 0.501644 -0.822729 1.235191 7 1 0 -0.975845 -2.160425 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021455 0.000000 3 H 1.021455 1.659361 0.000000 4 Si 1.749273 2.403616 2.403616 0.000000 5 H 2.558472 2.846520 3.493126 1.501548 0.000000 6 H 2.558472 3.493126 2.846520 1.501548 2.470383 7 H 3.000685 3.456683 3.456683 1.511151 2.344803 6 7 6 H 0.000000 7 H 2.344803 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.009408 1.174261 0.000000 2 1 0 0.345616 1.652757 0.829681 3 1 0 0.345616 1.652757 -0.829681 4 14 0 -0.009408 -0.575012 -0.000000 5 1 0 -0.787294 -0.926923 1.235191 6 1 0 -0.787294 -0.926923 -1.235191 7 1 0 1.080916 -1.621326 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 71.0501455 12.2915964 11.7726042 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9294602775 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9195141455 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.33D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 0.000210 Ang= 0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=4.92D-05 Max=5.33D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.78D-05 Max=2.22D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.18D-05 Max=1.36D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.36D-06 Max=2.97D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.99D-07 Max=7.44D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.44D-07 Max=1.01D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.64D-08 Max=2.80D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.19D-09 Max=1.02D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.25D-09 Max=9.25D-09 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -4.29D-05 DF= 0.00D+00 DXR= 4.29D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.61D-08 Max=1.70D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.34D-08 Max=1.74D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.93D-09 Max=4.48D-08 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.48D-09 Max=1.15D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.48D-10 Max=3.31D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=6.54D-11 Max=6.35D-10 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.10D-11 Max=7.48D-11 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.83D-12 Max=1.39D-11 NDo= 1 Linear equations converged to 4.273D-12 4.273D-11 after 7 iterations. SCF Done: E(RB97D3) = -347.085733667 a.u. after 3 cycles Convg = 0.5149D-11 18 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1455. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.011869324 -0.004846626 -0.000000000 2 1 -0.000027468 0.000030688 -0.000020090 3 1 -0.000027468 0.000030688 0.000020090 4 14 0.025417341 -0.001321485 0.000000000 5 1 0.000016845 -0.000012482 -0.000021132 6 1 0.000016845 -0.000012482 0.000021132 7 1 -0.013526771 0.006131698 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.025417341 RMS 0.007012694 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.032018811 RMS 0.008042979 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 30 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -7.84D-07 DEPred=-8.43D-07 R= 9.30D-01 Trust test= 9.30D-01 RLast= 7.99D-03 DXMaxT set to 1.88D-01 ITU= 0 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01270 0.02387 0.05869 0.06088 0.07691 Eigenvalues --- 0.10665 0.16000 0.16000 0.16728 0.16944 Eigenvalues --- 0.17863 0.35226 0.42768 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-8.97162370D-08 EMin= 1.26957727D-02 Quartic linear search produced a step of -0.07213. Iteration 1 RMS(Cart)= 0.00029455 RMS(Int)= 0.00000011 Iteration 2 RMS(Cart)= 0.00000009 RMS(Int)= 0.00000004 Iteration 1 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 2.29D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93027 0.00004 -0.00002 0.00017 0.00015 1.93042 R2 1.93027 0.00004 -0.00002 0.00017 0.00015 1.93042 R3 3.30565 -0.00002 -0.00013 -0.00023 -0.00037 3.30528 R4 2.83751 0.00003 -0.00004 0.00038 0.00034 2.83786 R5 2.83751 0.00003 -0.00004 0.00038 0.00034 2.83786 R6 2.85566 0.00001 -0.00007 0.00021 0.00014 2.85581 A1 1.89601 -0.00003 0.00010 -0.00043 -0.00032 1.89569 A2 2.05833 0.00002 0.00009 0.00047 0.00056 2.05889 A3 2.05833 0.00002 0.00009 0.00047 0.00056 2.05889 A4 1.80736 0.00756 0.00008 0.00015 0.00024 1.80760 A5 1.80736 0.00756 0.00008 0.00015 0.00024 1.80760 A6 2.33560 -0.03202 -0.00000 0.00000 0.00000 2.33560 A7 1.93198 0.00003 -0.00009 -0.00002 -0.00011 1.93187 A8 1.78392 0.00962 -0.00005 -0.00015 -0.00020 1.78372 A9 1.78392 0.00962 -0.00005 -0.00015 -0.00020 1.78372 D1 0.96635 -0.00291 -0.00018 -0.00027 -0.00045 0.96590 D2 2.98390 0.00291 -0.00022 -0.00017 -0.00039 2.98351 D3 -1.16647 -0.00000 -0.00020 -0.00022 -0.00042 -1.16689 D4 -2.98390 -0.00291 0.00022 0.00017 0.00039 -2.98351 D5 -0.96635 0.00291 0.00018 0.00027 0.00045 -0.96590 D6 1.16647 0.00000 0.00020 0.00022 0.00042 1.16689 Item Value Threshold Converged? Maximum Force 0.000039 0.000450 YES RMS Force 0.000020 0.000300 YES Maximum Displacement 0.000645 0.001800 YES RMS Displacement 0.000295 0.001200 YES Predicted change in Energy=-4.389848D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0215 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0215 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7493 -DE/DX = 0.0 ! ! R4 R(4,5) 1.5015 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5015 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5112 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.6334 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.9335 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.9335 -DE/DX = 0.0 ! ! A4 A(1,4,5) 103.5542 -DE/DX = 0.0076 ! ! A5 A(1,4,6) 103.5542 -DE/DX = 0.0076 ! ! A6 A(1,4,7) 133.82 -DE/DX = -0.032 ! ! A7 A(5,4,6) 110.6943 -DE/DX = 0.0 ! ! A8 A(5,4,7) 102.2111 -DE/DX = 0.0096 ! ! A9 A(6,4,7) 102.2111 -DE/DX = 0.0096 ! ! D1 D(2,1,4,5) 55.3678 -DE/DX = -0.0029 ! ! D2 D(2,1,4,6) 170.9648 -DE/DX = 0.0029 ! ! D3 D(2,1,4,7) -66.8337 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -170.9648 -DE/DX = -0.0029 ! ! D5 D(3,1,4,6) -55.3678 -DE/DX = 0.0029 ! ! D6 D(3,1,4,7) 66.8337 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01224445 RMS(Int)= 0.00377633 Iteration 2 RMS(Cart)= 0.00012178 RMS(Int)= 0.00377440 Iteration 3 RMS(Cart)= 0.00000022 RMS(Int)= 0.00377440 Iteration 1 RMS(Cart)= 0.00299580 RMS(Int)= 0.00092720 Iteration 2 RMS(Cart)= 0.00073527 RMS(Int)= 0.00100947 Iteration 3 RMS(Cart)= 0.00018061 RMS(Int)= 0.00105211 Iteration 4 RMS(Cart)= 0.00004438 RMS(Int)= 0.00106371 Iteration 5 RMS(Cart)= 0.00001090 RMS(Int)= 0.00106662 Iteration 6 RMS(Cart)= 0.00000268 RMS(Int)= 0.00106734 Iteration 7 RMS(Cart)= 0.00000066 RMS(Int)= 0.00106752 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.997448 0.842705 -0.000000 2 1 0 -1.501502 1.160741 -0.829648 3 1 0 -1.501502 1.160741 0.829648 4 14 0 -0.363796 -0.787563 0.000000 5 1 0 0.489495 -0.820835 -1.235305 6 1 0 0.489495 -0.820835 1.235305 7 1 0 -0.952828 -2.179290 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021535 0.000000 3 H 1.021535 1.659297 0.000000 4 Si 1.749082 2.403868 2.403868 0.000000 5 H 2.550361 2.838181 3.486365 1.501729 0.000000 6 H 2.550361 3.486365 2.838181 1.501729 2.470610 7 H 3.022324 3.484992 3.484992 1.511246 2.334883 6 7 6 H 0.000000 7 H 2.334883 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.007533 1.174630 -0.000000 2 1 0 0.347064 1.653670 0.829648 3 1 0 0.347064 1.653670 -0.829648 4 14 0 -0.007533 -0.574452 0.000000 5 1 0 -0.790807 -0.914591 1.235305 6 1 0 -0.790807 -0.914591 -1.235305 7 1 0 1.045677 -1.658247 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 71.6889297 12.2877082 11.7514423 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9314611343 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9215136881 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.33D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999997 0.000000 0.000000 0.002384 Ang= 0.27 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.78D-04 Max=3.37D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.96D-05 Max=2.25D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=7.02D-06 Max=6.71D-05 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=6.06D-06 Max=4.50D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.79D-06 Max=2.88D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.22D-07 Max=7.36D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.82D-07 Max=1.95D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.42D-08 Max=4.04D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=7.79D-09 Max=5.58D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.62D-09 Max=1.31D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -5.11D-05 DF= -1.14D-13 DXR= 5.11D-05 DFR= 2.43D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=4.60D-07 Max=5.02D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.73D-07 Max=3.13D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.40D-07 Max=9.23D-07 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.17D-08 Max=4.08D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.12D-08 Max=1.14D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.22D-09 Max=1.92D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.56D-10 Max=3.26D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.47D-11 Max=5.03D-10 NDo= 1 Linear equations converged to 9.844D-11 9.844D-10 after 7 iterations. SCF Done: E(RB97D3) = -347.084173553 a.u. after 3 cycles Convg = 0.8998D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.013103640 -0.004960968 -0.000000000 2 1 -0.000115638 0.000063803 -0.000063700 3 1 -0.000115638 0.000063803 0.000063700 4 14 0.028464414 -0.001467356 0.000000000 5 1 0.000053858 0.000036263 -0.000157757 6 1 0.000053858 0.000036263 0.000157757 7 1 -0.015237215 0.006228193 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.028464414 RMS 0.007806459 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.035415446 RMS 0.008899151 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 31 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01270 0.02387 0.05636 0.06130 0.07653 Eigenvalues --- 0.10672 0.16000 0.16000 0.16730 0.16944 Eigenvalues --- 0.17870 0.35236 0.42767 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.80174098D-06 EMin= 1.27006633D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00097267 RMS(Int)= 0.00000165 Iteration 2 RMS(Cart)= 0.00000135 RMS(Int)= 0.00000110 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000110 Iteration 1 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 3.51D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93042 0.00013 0.00000 0.00056 0.00056 1.93099 R2 1.93042 0.00013 0.00000 0.00056 0.00056 1.93099 R3 3.30529 0.00033 0.00000 0.00143 0.00143 3.30671 R4 2.83786 0.00016 0.00000 0.00109 0.00109 2.83895 R5 2.83786 0.00016 0.00000 0.00109 0.00109 2.83895 R6 2.85584 0.00020 0.00000 0.00132 0.00132 2.85716 A1 1.89568 -0.00007 0.00000 -0.00187 -0.00187 1.89382 A2 2.05889 0.00004 0.00000 -0.00061 -0.00061 2.05828 A3 2.05889 0.00004 0.00000 -0.00061 -0.00061 2.05828 A4 1.79928 0.00841 0.00000 -0.00069 -0.00069 1.79859 A5 1.79928 0.00841 0.00000 -0.00069 -0.00069 1.79859 A6 2.37051 -0.03542 0.00000 0.00000 0.00000 2.37051 A7 1.93190 0.00008 0.00000 0.00115 0.00115 1.93305 A8 1.77324 0.01067 0.00000 0.00033 0.00033 1.77357 A9 1.77324 0.01067 0.00000 0.00033 0.00033 1.77357 D1 0.96900 -0.00311 0.00000 0.00194 0.00194 0.97095 D2 2.98040 0.00314 0.00000 0.00270 0.00270 2.98310 D3 -1.16689 0.00002 0.00000 0.00232 0.00232 -1.16457 D4 -2.98040 -0.00314 0.00000 -0.00270 -0.00270 -2.98310 D5 -0.96900 0.00311 0.00000 -0.00194 -0.00194 -0.97095 D6 1.16689 -0.00002 0.00000 -0.00232 -0.00232 1.16457 Item Value Threshold Converged? Maximum Force 0.000326 0.000450 YES RMS Force 0.000115 0.000300 YES Maximum Displacement 0.002038 0.001800 NO RMS Displacement 0.000973 0.001200 YES Predicted change in Energy=-8.829310D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.996369 0.843505 -0.000000 2 1 0 -1.502101 1.160657 -0.829334 3 1 0 -1.502101 1.160657 0.829334 4 14 0 -0.363324 -0.787810 0.000000 5 1 0 0.489596 -0.820741 -1.236274 6 1 0 0.489596 -0.820741 1.236274 7 1 0 -0.953379 -2.179861 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021834 0.000000 3 H 1.021834 1.658667 0.000000 4 Si 1.749838 2.404398 2.404398 0.000000 5 H 2.550722 2.838731 3.487052 1.502309 0.000000 6 H 2.550722 3.487052 2.838731 1.502309 2.472548 7 H 3.023671 3.485390 3.485390 1.511943 2.336184 6 7 6 H 0.000000 7 H 2.336184 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.007719 1.175108 -0.000000 2 1 0 0.349020 1.653738 0.829334 3 1 0 0.349020 1.653738 -0.829334 4 14 0 -0.007719 -0.574730 0.000000 5 1 0 -0.790954 -0.913995 1.236274 6 1 0 -0.790954 -0.913995 -1.236274 7 1 0 1.045976 -1.659025 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 71.6126533 12.2789071 11.7433800 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9076803776 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8977348450 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.33D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 0.000000 Rot= 1.000000 -0.000000 -0.000000 0.000148 Ang= 0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.88D-05 Max=4.01D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.19D-05 Max=1.73D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.04D-05 Max=1.08D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.96D-06 Max=2.22D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.59D-07 Max=6.19D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.32D-07 Max=7.88D-07 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.13D-08 Max=3.71D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=7.88D-09 Max=7.95D-08 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.63D-09 Max=1.28D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -2.55D-05 DF= 0.00D+00 DXR= 2.55D-05 DFR= 0.00D+00 which will be used. SCF Done: E(RB97D3) = -347.084174354 a.u. after 2 cycles Convg = 0.2652D-06 10 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.013317551 -0.005025797 -0.000000000 2 1 0.000042795 -0.000030213 0.000023030 3 1 0.000042795 -0.000030213 -0.000023030 4 14 0.028396744 -0.001360580 0.000000000 5 1 -0.000028480 0.000010544 0.000038131 6 1 -0.000028480 0.000010544 -0.000038131 7 1 -0.015107823 0.006425715 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.028396744 RMS 0.007808388 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.035391651 RMS 0.008890098 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 31 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -8.01D-07 DEPred=-8.83D-07 R= 9.07D-01 Trust test= 9.07D-01 RLast= 6.81D-03 DXMaxT set to 1.88D-01 ITU= 0 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01218 0.02387 0.05639 0.06110 0.08687 Eigenvalues --- 0.10440 0.16000 0.16000 0.16679 0.16944 Eigenvalues --- 0.18797 0.33814 0.43795 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-1.00064922D-07 EMin= 1.21754237D-02 Quartic linear search produced a step of -0.09430. Iteration 1 RMS(Cart)= 0.00024077 RMS(Int)= 0.00000010 Iteration 2 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000009 Iteration 1 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 6.34D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93099 -0.00005 -0.00005 -0.00012 -0.00018 1.93081 R2 1.93099 -0.00005 -0.00005 -0.00012 -0.00018 1.93081 R3 3.30671 0.00005 -0.00013 0.00051 0.00037 3.30709 R4 2.83895 -0.00005 -0.00010 -0.00029 -0.00040 2.83856 R5 2.83895 -0.00005 -0.00010 -0.00029 -0.00040 2.83856 R6 2.85716 -0.00002 -0.00012 -0.00004 -0.00017 2.85699 A1 1.89382 0.00003 0.00018 0.00028 0.00046 1.89427 A2 2.05828 -0.00002 0.00006 -0.00041 -0.00035 2.05793 A3 2.05828 -0.00002 0.00006 -0.00041 -0.00035 2.05793 A4 1.79859 0.00846 0.00006 -0.00032 -0.00025 1.79834 A5 1.79859 0.00846 0.00006 -0.00032 -0.00025 1.79834 A6 2.37051 -0.03539 -0.00000 0.00000 0.00000 2.37051 A7 1.93305 0.00001 -0.00011 0.00024 0.00013 1.93318 A8 1.77357 0.01062 -0.00003 0.00025 0.00021 1.77378 A9 1.77357 0.01062 -0.00003 0.00025 0.00021 1.77378 D1 0.97095 -0.00311 -0.00018 0.00025 0.00007 0.97102 D2 2.98310 0.00310 -0.00025 0.00028 0.00003 2.98313 D3 -1.16457 -0.00000 -0.00022 0.00027 0.00005 -1.16452 D4 -2.98310 -0.00310 0.00025 -0.00028 -0.00003 -2.98313 D5 -0.97095 0.00311 0.00018 -0.00025 -0.00007 -0.97102 D6 1.16457 0.00000 0.00022 -0.00027 -0.00005 1.16452 Item Value Threshold Converged? Maximum Force 0.000049 0.000450 YES RMS Force 0.000027 0.000300 YES Maximum Displacement 0.000400 0.001800 YES RMS Displacement 0.000241 0.001200 YES Predicted change in Energy=-5.473038D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0218 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0218 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7498 -DE/DX = 0.0 ! ! R4 R(4,5) 1.5023 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5023 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5119 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.5076 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.9307 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.9307 -DE/DX = 0.0 ! ! A4 A(1,4,5) 103.0516 -DE/DX = 0.0085 ! ! A5 A(1,4,6) 103.0516 -DE/DX = 0.0085 ! ! A6 A(1,4,7) 135.82 -DE/DX = -0.0354 ! ! A7 A(5,4,6) 110.7556 -DE/DX = 0.0 ! ! A8 A(5,4,7) 101.618 -DE/DX = 0.0106 ! ! A9 A(6,4,7) 101.618 -DE/DX = 0.0106 ! ! D1 D(2,1,4,5) 55.6311 -DE/DX = -0.0031 ! ! D2 D(2,1,4,6) 170.919 -DE/DX = 0.0031 ! ! D3 D(2,1,4,7) -66.7249 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -170.919 -DE/DX = -0.0031 ! ! D5 D(3,1,4,6) -55.6311 -DE/DX = 0.0031 ! ! D6 D(3,1,4,7) 66.7249 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01219351 RMS(Int)= 0.00377472 Iteration 2 RMS(Cart)= 0.00012156 RMS(Int)= 0.00377280 Iteration 3 RMS(Cart)= 0.00000021 RMS(Int)= 0.00377280 Iteration 1 RMS(Cart)= 0.00298099 RMS(Int)= 0.00092591 Iteration 2 RMS(Cart)= 0.00073095 RMS(Int)= 0.00100801 Iteration 3 RMS(Cart)= 0.00017937 RMS(Int)= 0.00105051 Iteration 4 RMS(Cart)= 0.00004402 RMS(Int)= 0.00106206 Iteration 5 RMS(Cart)= 0.00001081 RMS(Int)= 0.00106496 Iteration 6 RMS(Cart)= 0.00000265 RMS(Int)= 0.00106568 Iteration 7 RMS(Cart)= 0.00000065 RMS(Int)= 0.00106585 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.993508 0.846174 -0.000000 2 1 0 -1.496152 1.167746 -0.829394 3 1 0 -1.496152 1.167746 0.829394 4 14 0 -0.375895 -0.791258 0.000000 5 1 0 0.476987 -0.818475 -1.236185 6 1 0 0.476987 -0.818475 1.236185 7 1 0 -0.930351 -2.197792 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.021741 0.000000 3 H 1.021741 1.658788 0.000000 4 Si 1.750037 2.404281 2.404281 0.000000 5 H 2.541961 2.829105 3.479220 1.502099 0.000000 6 H 2.541961 3.479220 2.829105 1.502099 2.472370 7 H 3.044622 3.512104 3.512104 1.511873 2.326214 6 7 6 H 0.000000 7 H 2.326214 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.005846 1.175668 -0.000000 2 1 0 0.350968 1.653939 0.829394 3 1 0 0.350968 1.653939 -0.829394 4 14 0 -0.005846 -0.574369 0.000000 5 1 0 -0.794245 -0.900830 1.236185 6 1 0 -0.794245 -0.900830 -1.236185 7 1 0 1.009320 -1.694726 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 72.2730604 12.2738090 11.7212921 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.9100272107 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.9000783440 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.33D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 0.000000 -0.000000 Rot= 0.999997 0.000000 -0.000000 0.002459 Ang= 0.28 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.81D-04 Max=3.68D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.47D-05 Max=2.86D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.76D-05 Max=1.86D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.86D-06 Max=6.32D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.38D-06 Max=2.12D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.93D-07 Max=8.18D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.76D-07 Max=1.91D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=4.43D-08 Max=4.16D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=8.07D-09 Max=6.39D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.62D-09 Max=1.31D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -7.40D-05 DF= -2.27D-13 DXR= 7.40D-05 DFR= 4.89D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=5.06D-07 Max=6.14D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=2.99D-07 Max=3.45D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.55D-07 Max=1.05D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.56D-08 Max=4.80D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.19D-08 Max=1.17D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.40D-09 Max=2.11D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.75D-10 Max=3.13D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.60D-11 Max=4.99D-10 NDo= 1 Linear equations converged to 1.049D-10 1.049D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.082459662 a.u. after 3 cycles Convg = 0.9319D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.014316055 -0.005370368 -0.000000000 2 1 -0.000160627 0.000104969 -0.000097436 3 1 -0.000160627 0.000104969 0.000097436 4 14 0.031281664 -0.001238596 0.000000000 5 1 0.000085136 0.000016167 -0.000206996 6 1 0.000085136 0.000016167 0.000206996 7 1 -0.016814627 0.006366693 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.031281664 RMS 0.008556052 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.038736745 RMS 0.009732240 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 32 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01217 0.02387 0.05408 0.06143 0.08626 Eigenvalues --- 0.10457 0.16000 0.16000 0.16683 0.16944 Eigenvalues --- 0.18799 0.33832 0.43794 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.14551756D-06 EMin= 1.21727154D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00098990 RMS(Int)= 0.00000147 Iteration 2 RMS(Cart)= 0.00000122 RMS(Int)= 0.00000095 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000095 Iteration 1 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000005 ClnCor: largest displacement from symmetrization is 2.33D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93081 0.00019 0.00000 0.00059 0.00059 1.93140 R2 1.93081 0.00019 0.00000 0.00059 0.00059 1.93140 R3 3.30709 0.00034 0.00000 0.00151 0.00151 3.30860 R4 2.83856 0.00022 0.00000 0.00117 0.00117 2.83973 R5 2.83856 0.00022 0.00000 0.00117 0.00117 2.83973 R6 2.85703 0.00024 0.00000 0.00144 0.00144 2.85847 A1 1.89427 -0.00011 0.00000 -0.00186 -0.00186 1.89241 A2 2.05793 0.00006 0.00000 -0.00052 -0.00053 2.05740 A3 2.05793 0.00006 0.00000 -0.00052 -0.00053 2.05740 A4 1.78988 0.00938 0.00000 -0.00058 -0.00058 1.78930 A5 1.78988 0.00938 0.00000 -0.00058 -0.00058 1.78930 A6 2.40541 -0.03874 0.00000 0.00000 0.00000 2.40541 A7 1.93324 0.00004 0.00000 0.00123 0.00123 1.93447 A8 1.76336 0.01159 0.00000 0.00021 0.00021 1.76357 A9 1.76336 0.01159 0.00000 0.00021 0.00021 1.76357 D1 0.97400 -0.00328 0.00000 0.00174 0.00174 0.97574 D2 2.98014 0.00331 0.00000 0.00266 0.00266 2.98280 D3 -1.16452 0.00002 0.00000 0.00220 0.00220 -1.16232 D4 -2.98014 -0.00331 0.00000 -0.00266 -0.00266 -2.98280 D5 -0.97400 0.00328 0.00000 -0.00174 -0.00174 -0.97574 D6 1.16452 -0.00002 0.00000 -0.00220 -0.00220 1.16232 Item Value Threshold Converged? Maximum Force 0.000338 0.000450 YES RMS Force 0.000137 0.000300 YES Maximum Displacement 0.001953 0.001800 NO RMS Displacement 0.000990 0.001200 YES Predicted change in Energy=-1.053212D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.992509 0.846996 -0.000000 2 1 0 -1.496786 1.167783 -0.829091 3 1 0 -1.496786 1.167783 0.829091 4 14 0 -0.375391 -0.791476 0.000000 5 1 0 0.477091 -0.818481 -1.237218 6 1 0 0.477091 -0.818481 1.237218 7 1 0 -0.930793 -2.198458 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022052 0.000000 3 H 1.022052 1.658182 0.000000 4 Si 1.750836 2.404915 2.404915 0.000000 5 H 2.542489 2.829842 3.480096 1.502719 0.000000 6 H 2.542489 3.480096 2.829842 1.502719 2.474437 7 H 3.046080 3.512736 3.512736 1.512637 2.327484 6 7 6 H 0.000000 7 H 2.327484 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.006033 1.176183 -0.000000 2 1 0 0.352813 1.654125 0.829091 3 1 0 0.352813 1.654125 -0.829091 4 14 0 -0.006033 -0.574654 0.000000 5 1 0 -0.794287 -0.900400 1.237218 6 1 0 -0.794287 -0.900400 -1.237218 7 1 0 1.009645 -1.695576 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 72.1963332 12.2642270 11.7123240 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8844019811 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8744553409 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 -0.000000 -0.000000 Rot= 1.000000 -0.000000 -0.000000 0.000131 Ang= 0.01 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=3.77D-05 Max=3.74D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.19D-05 Max=1.79D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.07D-05 Max=1.08D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.08D-06 Max=2.36D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=6.86D-07 Max=6.02D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.43D-07 Max=8.49D-07 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.55D-08 Max=4.26D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.53D-09 Max=8.05D-08 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=1.81D-09 Max=1.49D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -2.41D-05 DF= 0.00D+00 DXR= 2.41D-05 DFR= 0.00D+00 which will be used. SCF Done: E(RB97D3) = -347.082460721 a.u. after 2 cycles Convg = 0.2440D-06 10 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1454. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.014524071 -0.005443379 -0.000000000 2 1 0.000004186 0.000001790 -0.000002481 3 1 0.000004186 0.000001790 0.000002481 4 14 0.031206318 -0.001145278 0.000000000 5 1 -0.000002633 0.000000628 0.000001469 6 1 -0.000002633 0.000000628 -0.000001469 7 1 -0.016685353 0.006583821 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.031206318 RMS 0.008556459 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.038709493 RMS 0.009721893 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 32 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.06D-06 DEPred=-1.05D-06 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 6.63D-03 DXNew= 3.1674D-01 1.9887D-02 Trust test= 1.01D+00 RLast= 6.63D-03 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01239 0.02387 0.05410 0.06110 0.08718 Eigenvalues --- 0.10406 0.16000 0.16000 0.16676 0.16944 Eigenvalues --- 0.18857 0.33208 0.43596 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda= 0.00000000D+00 EMin= 1.23903062D-02 Quartic linear search produced a step of -0.00690. Iteration 1 RMS(Cart)= 0.00007007 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Iteration 1 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.28D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93140 0.00000 -0.00000 -0.00001 -0.00001 1.93138 R2 1.93140 0.00000 -0.00000 -0.00001 -0.00001 1.93138 R3 3.30860 0.00003 -0.00001 0.00005 0.00004 3.30864 R4 2.83973 -0.00000 -0.00001 -0.00001 -0.00002 2.83970 R5 2.83973 -0.00000 -0.00001 -0.00001 -0.00002 2.83970 R6 2.85847 0.00000 -0.00001 0.00002 0.00001 2.85847 A1 1.89241 0.00000 0.00001 0.00008 0.00009 1.89250 A2 2.05740 0.00000 0.00000 0.00008 0.00008 2.05748 A3 2.05740 0.00000 0.00000 0.00008 0.00008 2.05748 A4 1.78930 0.00942 0.00000 -0.00003 -0.00003 1.78928 A5 1.78930 0.00942 0.00000 -0.00003 -0.00003 1.78928 A6 2.40541 -0.03871 -0.00000 0.00000 0.00000 2.40541 A7 1.93447 -0.00003 -0.00001 0.00004 0.00003 1.93450 A8 1.76357 0.01154 -0.00000 0.00002 0.00002 1.76359 A9 1.76357 0.01154 -0.00000 0.00002 0.00002 1.76359 D1 0.97574 -0.00327 -0.00001 -0.00017 -0.00018 0.97556 D2 2.98280 0.00326 -0.00002 -0.00015 -0.00017 2.98264 D3 -1.16232 -0.00000 -0.00002 -0.00016 -0.00017 -1.16249 D4 -2.98280 -0.00326 0.00002 0.00015 0.00017 -2.98264 D5 -0.97574 0.00327 0.00001 0.00017 0.00018 -0.97556 D6 1.16232 0.00000 0.00002 0.00016 0.00017 1.16249 Item Value Threshold Converged? Maximum Force 0.000026 0.000450 YES RMS Force 0.000006 0.000300 YES Maximum Displacement 0.000136 0.001800 YES RMS Displacement 0.000070 0.001200 YES Predicted change in Energy=-2.870232D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0221 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0221 -DE/DX = 0.0 ! ! R3 R(1,4) 1.7508 -DE/DX = 0.0 ! ! R4 R(4,5) 1.5027 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5027 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5126 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.427 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.8805 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.8805 -DE/DX = 0.0 ! ! A4 A(1,4,5) 102.5195 -DE/DX = 0.0094 ! ! A5 A(1,4,6) 102.5195 -DE/DX = 0.0094 ! ! A6 A(1,4,7) 137.82 -DE/DX = -0.0387 ! ! A7 A(5,4,6) 110.8371 -DE/DX = 0.0 ! ! A8 A(5,4,7) 101.045 -DE/DX = 0.0115 ! ! A9 A(6,4,7) 101.045 -DE/DX = 0.0115 ! ! D1 D(2,1,4,5) 55.9058 -DE/DX = -0.0033 ! ! D2 D(2,1,4,6) 170.902 -DE/DX = 0.0033 ! ! D3 D(2,1,4,7) -66.5961 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -170.902 -DE/DX = -0.0033 ! ! D5 D(3,1,4,6) -55.9058 -DE/DX = 0.0033 ! ! D6 D(3,1,4,7) 66.5961 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01214470 RMS(Int)= 0.00377315 Iteration 2 RMS(Cart)= 0.00012139 RMS(Int)= 0.00377124 Iteration 3 RMS(Cart)= 0.00000020 RMS(Int)= 0.00377124 Iteration 1 RMS(Cart)= 0.00296681 RMS(Int)= 0.00092465 Iteration 2 RMS(Cart)= 0.00072681 RMS(Int)= 0.00100659 Iteration 3 RMS(Cart)= 0.00017818 RMS(Int)= 0.00104897 Iteration 4 RMS(Cart)= 0.00004369 RMS(Int)= 0.00106047 Iteration 5 RMS(Cart)= 0.00001071 RMS(Int)= 0.00106336 Iteration 6 RMS(Cart)= 0.00000263 RMS(Int)= 0.00106407 Iteration 7 RMS(Cart)= 0.00000064 RMS(Int)= 0.00106424 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.989744 0.849273 -0.000000 2 1 0 -1.490849 1.174920 -0.829111 3 1 0 -1.490849 1.174920 0.829111 4 14 0 -0.388094 -0.794967 0.000000 5 1 0 0.464466 -0.816410 -1.237260 6 1 0 0.464466 -0.816410 1.237260 7 1 0 -0.907480 -2.215660 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022045 0.000000 3 H 1.022045 1.658222 0.000000 4 Si 1.750859 2.404984 2.404984 0.000000 5 H 2.533780 2.820503 3.472541 1.502707 0.000000 6 H 2.533780 3.472540 2.820503 1.502707 2.474520 7 H 3.066037 3.538895 3.538895 1.512657 2.317531 6 7 6 H 0.000000 7 H 2.317531 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.004107 1.176558 -0.000000 2 1 0 0.354580 1.654569 0.829111 3 1 0 0.354580 1.654569 -0.829111 4 14 0 -0.004107 -0.574302 0.000000 5 1 0 -0.797381 -0.887406 1.237260 6 1 0 -0.797381 -0.887406 -1.237260 7 1 0 0.971847 -1.730004 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 72.8670164 12.2605679 11.6913859 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8876019150 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8776515162 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 0.999997 0.000000 -0.000000 0.002443 Ang= 0.28 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.84D-04 Max=3.80D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.75D-05 Max=3.06D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.99D-05 Max=2.12D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=8.49D-06 Max=6.74D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.65D-06 Max=2.46D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.35D-07 Max=8.17D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.07D-07 Max=2.36D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.14D-08 Max=4.77D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=9.00D-09 Max=7.34D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=1.87D-09 Max=1.52D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -8.10D-05 DF= -2.84D-13 DXR= 8.10D-05 DFR= 6.02D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=5.19D-07 Max=6.63D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.10D-07 Max=3.64D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.62D-07 Max=1.21D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=4.80D-08 Max=5.36D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.23D-08 Max=1.18D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.55D-09 Max=2.21D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=3.95D-10 Max=3.07D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.65D-11 Max=4.87D-10 NDo= 1 Linear equations converged to 1.061D-10 1.061D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.080594797 a.u. after 3 cycles Convg = 0.9575D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.015624909 -0.005565767 -0.000000000 2 1 -0.000147111 0.000089286 -0.000086622 3 1 -0.000147111 0.000089286 0.000086622 4 14 0.034152041 -0.001094851 0.000000000 5 1 0.000071418 0.000019453 -0.000203792 6 1 0.000071418 0.000019453 0.000203792 7 1 -0.018375746 0.006443142 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.034152041 RMS 0.009314675 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.041988069 RMS 0.010547342 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 33 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01239 0.02387 0.05181 0.06143 0.08658 Eigenvalues --- 0.10425 0.16000 0.16000 0.16682 0.16944 Eigenvalues --- 0.18859 0.33227 0.43596 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.51480820D-06 EMin= 1.23882455D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00113575 RMS(Int)= 0.00000253 Iteration 2 RMS(Cart)= 0.00000204 RMS(Int)= 0.00000171 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000171 Iteration 1 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000006 ClnCor: largest displacement from symmetrization is 4.11D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93139 0.00017 0.00000 0.00051 0.00051 1.93190 R2 1.93139 0.00017 0.00000 0.00051 0.00051 1.93190 R3 3.30864 0.00041 0.00000 0.00212 0.00212 3.31076 R4 2.83970 0.00021 0.00000 0.00098 0.00098 2.84068 R5 2.83970 0.00021 0.00000 0.00098 0.00098 2.84068 R6 2.85851 0.00026 0.00000 0.00153 0.00153 2.86004 A1 1.89250 -0.00009 0.00000 -0.00171 -0.00172 1.89078 A2 2.05748 0.00005 0.00000 -0.00101 -0.00101 2.05647 A3 2.05748 0.00005 0.00000 -0.00101 -0.00101 2.05647 A4 1.78069 0.01032 0.00000 -0.00080 -0.00080 1.77989 A5 1.78069 0.01032 0.00000 -0.00080 -0.00080 1.77989 A6 2.44032 -0.04199 0.00000 0.00000 0.00000 2.44032 A7 1.93459 0.00001 0.00000 0.00159 0.00159 1.93618 A8 1.75321 0.01250 0.00000 0.00035 0.00035 1.75356 A9 1.75321 0.01250 0.00000 0.00035 0.00035 1.75356 D1 0.97844 -0.00342 0.00000 0.00207 0.00207 0.98050 D2 2.97977 0.00345 0.00000 0.00325 0.00325 2.98302 D3 -1.16249 0.00002 0.00000 0.00266 0.00266 -1.15983 D4 -2.97977 -0.00345 0.00000 -0.00325 -0.00325 -2.98302 D5 -0.97844 0.00342 0.00000 -0.00207 -0.00207 -0.98050 D6 1.16249 -0.00002 0.00000 -0.00266 -0.00266 1.15983 Item Value Threshold Converged? Maximum Force 0.000411 0.000450 YES RMS Force 0.000144 0.000300 YES Maximum Displacement 0.002338 0.001800 NO RMS Displacement 0.001136 0.001200 YES Predicted change in Energy=-1.235140D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.988507 0.850406 0.000000 2 1 0 -1.491487 1.174758 -0.828816 3 1 0 -1.491487 1.174758 0.828816 4 14 0 -0.387459 -0.795247 -0.000000 5 1 0 0.464417 -0.816310 -1.238365 6 1 0 0.464417 -0.816310 1.238365 7 1 0 -0.907977 -2.216391 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022316 0.000000 3 H 1.022316 1.657632 0.000000 4 Si 1.751980 2.405564 2.405564 0.000000 5 H 2.534261 2.820930 3.473205 1.503224 0.000000 6 H 2.534261 3.473205 2.820930 1.503224 2.476730 7 H 3.067854 3.539395 3.539395 1.513469 2.318887 6 7 6 H 0.000000 7 H 2.318887 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.004344 1.177293 -0.000000 2 1 0 0.356836 1.654516 0.828816 3 1 0 0.356836 1.654516 -0.828816 4 14 0 -0.004344 -0.574688 0.000000 5 1 0 -0.797294 -0.886723 1.238365 6 1 0 -0.797294 -0.886723 -1.238365 7 1 0 0.972133 -1.731010 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 72.7841226 12.2484069 11.6800135 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8574581580 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8475099380 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000165 Ang= 0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=4.79D-05 Max=4.64D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.91D-05 Max=2.46D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.35D-05 Max=1.43D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.76D-06 Max=3.51D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.17D-07 Max=7.64D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.89D-07 Max=1.19D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.42D-08 Max=4.75D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.17D-08 Max=1.16D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.05D-09 Max=1.78D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -3.50D-05 DF= 0.00D+00 DXR= 3.50D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.49D-08 Max=1.57D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.27D-08 Max=1.53D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.69D-09 Max=3.61D-08 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.40D-09 Max=1.05D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.46D-10 Max=3.30D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.14D-11 Max=7.43D-10 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.07D-11 Max=8.20D-11 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.62D-12 Max=1.18D-11 NDo= 1 Linear equations converged to 3.865D-12 3.865D-11 after 7 iterations. SCF Done: E(RB97D3) = -347.080596013 a.u. after 3 cycles Convg = 0.4801D-11 18 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.015744630 -0.005809430 -0.000000000 2 1 -0.000013262 0.000020304 -0.000014804 3 1 -0.000013262 0.000020304 0.000014804 4 14 0.033984399 -0.000891607 0.000000000 5 1 0.000011185 -0.000007945 -0.000012179 6 1 0.000011185 -0.000007945 0.000012179 7 1 -0.018235616 0.006676319 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.033984399 RMS 0.009295391 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.041960807 RMS 0.010535902 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 33 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.22D-06 DEPred=-1.24D-06 R= 9.84D-01 TightC=F SS= 1.41D+00 RLast= 7.89D-03 DXNew= 3.1674D-01 2.3661D-02 Trust test= 9.84D-01 RLast= 7.89D-03 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01347 0.02387 0.05184 0.06137 0.08504 Eigenvalues --- 0.10326 0.16000 0.16000 0.16717 0.16944 Eigenvalues --- 0.18500 0.33173 0.42878 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-4.59041142D-08 EMin= 1.34677585D-02 Quartic linear search produced a step of -0.02833. Iteration 1 RMS(Cart)= 0.00022866 RMS(Int)= 0.00000009 Iteration 2 RMS(Cart)= 0.00000008 RMS(Int)= 0.00000005 Iteration 1 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.64D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93190 0.00002 -0.00001 0.00009 0.00007 1.93197 R2 1.93190 0.00002 -0.00001 0.00009 0.00007 1.93197 R3 3.31076 -0.00001 -0.00006 -0.00022 -0.00028 3.31049 R4 2.84068 0.00002 -0.00003 0.00022 0.00019 2.84087 R5 2.84068 0.00002 -0.00003 0.00022 0.00019 2.84087 R6 2.86004 0.00000 -0.00004 0.00010 0.00005 2.86009 A1 1.89078 -0.00002 0.00005 -0.00014 -0.00009 1.89069 A2 2.05647 0.00001 0.00003 0.00041 0.00044 2.05691 A3 2.05647 0.00001 0.00003 0.00041 0.00044 2.05691 A4 1.77989 0.01037 0.00002 0.00015 0.00017 1.78007 A5 1.77989 0.01037 0.00002 0.00015 0.00017 1.78007 A6 2.44032 -0.04196 -0.00000 0.00000 0.00000 2.44032 A7 1.93618 -0.00007 -0.00005 -0.00007 -0.00011 1.93607 A8 1.75356 0.01244 -0.00001 -0.00013 -0.00014 1.75341 A9 1.75356 0.01244 -0.00001 -0.00013 -0.00014 1.75341 D1 0.98050 -0.00340 -0.00006 -0.00040 -0.00045 0.98005 D2 2.98302 0.00339 -0.00009 -0.00037 -0.00046 2.98255 D3 -1.15983 -0.00000 -0.00008 -0.00038 -0.00046 -1.16029 D4 -2.98302 -0.00339 0.00009 0.00037 0.00046 -2.98255 D5 -0.98050 0.00340 0.00006 0.00040 0.00045 -0.98005 D6 1.15983 0.00000 0.00008 0.00038 0.00046 1.16029 Item Value Threshold Converged? Maximum Force 0.000025 0.000450 YES RMS Force 0.000013 0.000300 YES Maximum Displacement 0.000493 0.001800 YES RMS Displacement 0.000229 0.001200 YES Predicted change in Energy=-1.682241D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0223 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0223 -DE/DX = 0.0 ! ! R3 R(1,4) 1.752 -DE/DX = 0.0 ! ! R4 R(4,5) 1.5032 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5032 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5135 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.3335 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.8272 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.8272 -DE/DX = 0.0 ! ! A4 A(1,4,5) 101.9804 -DE/DX = 0.0104 ! ! A5 A(1,4,6) 101.9804 -DE/DX = 0.0104 ! ! A6 A(1,4,7) 139.82 -DE/DX = -0.042 ! ! A7 A(5,4,6) 110.9352 -DE/DX = -0.0001 ! ! A8 A(5,4,7) 100.4714 -DE/DX = 0.0124 ! ! A9 A(6,4,7) 100.4714 -DE/DX = 0.0124 ! ! D1 D(2,1,4,5) 56.1788 -DE/DX = -0.0034 ! ! D2 D(2,1,4,6) 170.9143 -DE/DX = 0.0034 ! ! D3 D(2,1,4,7) -66.4535 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -170.9143 -DE/DX = -0.0034 ! ! D5 D(3,1,4,6) -56.1788 -DE/DX = 0.0034 ! ! D6 D(3,1,4,7) 66.4535 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Iteration 1 RMS(Cart)= 0.01209968 RMS(Int)= 0.00377066 Iteration 2 RMS(Cart)= 0.00012131 RMS(Int)= 0.00376876 Iteration 3 RMS(Cart)= 0.00000019 RMS(Int)= 0.00376876 Iteration 1 RMS(Cart)= 0.00295215 RMS(Int)= 0.00092274 Iteration 2 RMS(Cart)= 0.00072222 RMS(Int)= 0.00100443 Iteration 3 RMS(Cart)= 0.00017680 RMS(Int)= 0.00104662 Iteration 4 RMS(Cart)= 0.00004329 RMS(Int)= 0.00105805 Iteration 5 RMS(Cart)= 0.00001060 RMS(Int)= 0.00106091 Iteration 6 RMS(Cart)= 0.00000260 RMS(Int)= 0.00106162 Iteration 7 RMS(Cart)= 0.00000064 RMS(Int)= 0.00106179 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.985865 0.852288 0.000000 2 1 0 -1.485499 1.181881 -0.828821 3 1 0 -1.485499 1.181881 0.828821 4 14 0 -0.400310 -0.798791 -0.000000 5 1 0 0.451737 -0.814394 -1.238452 6 1 0 0.451737 -0.814394 1.238452 7 1 0 -0.884386 -2.232805 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022355 0.000000 3 H 1.022355 1.657642 0.000000 4 Si 1.751837 2.405751 2.405751 0.000000 5 H 2.525528 2.811725 3.465778 1.503327 0.000000 6 H 2.525528 3.465778 2.811725 1.503327 2.476904 7 H 3.086761 3.564879 3.564879 1.513515 2.308869 6 7 6 H 0.000000 7 H 2.308869 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.002360 1.177488 -0.000000 2 1 0 0.358370 1.655128 0.828821 3 1 0 0.358370 1.655128 -0.828821 4 14 0 -0.002360 -0.574349 0.000000 5 1 0 -0.800185 -0.873854 1.238452 6 1 0 -0.800185 -0.873854 -1.238452 7 1 0 0.933195 -1.764081 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 73.4670801 12.2464060 11.6605594 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8627112017 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8527586014 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= 0.000000 -0.000000 0.000000 Rot= 0.999997 -0.000000 -0.000000 0.002426 Ang= 0.28 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=2.87D-04 Max=3.91D-03 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=3.04D-05 Max=3.52D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.20D-05 Max=2.38D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=9.17D-06 Max=7.19D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=2.93D-06 Max=2.81D-05 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=8.78D-07 Max=8.13D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.41D-07 Max=2.82D-06 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=5.85D-08 Max=5.38D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=9.85D-09 Max=8.13D-08 NDo= 1 LinEq1: Iter= 9 NonCon= 0 RMS=2.11D-09 Max=1.74D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 9 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -8.66D-05 DF= -3.41D-13 DXR= 8.66D-05 DFR= 7.10D-09 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=5.36D-07 Max=7.19D-06 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=3.24D-07 Max=3.87D-06 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.70D-07 Max=1.35D-06 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=5.06D-08 Max=5.87D-07 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.28D-08 Max=1.20D-07 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.71D-09 Max=2.34D-08 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.19D-10 Max=2.97D-09 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=6.72D-11 Max=4.48D-10 NDo= 1 Linear equations converged to 1.076D-10 1.076D-09 after 7 iterations. SCF Done: E(RB97D3) = -347.078582033 a.u. after 3 cycles Convg = 0.9907D-10 19 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.016903174 -0.005747632 -0.000000000 2 1 -0.000136016 0.000076973 -0.000078793 3 1 -0.000136016 0.000076973 0.000078793 4 14 0.036974828 -0.000880475 0.000000000 5 1 0.000059850 0.000020509 -0.000202523 6 1 0.000059850 0.000020509 0.000202523 7 1 -0.019919323 0.006433143 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.036974828 RMS 0.010059305 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.045182938 RMS 0.011347152 Search for a local minimum. Step number 1 out of a maximum of 31 on scan point 34 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01347 0.02387 0.04958 0.06178 0.08452 Eigenvalues --- 0.10342 0.16000 0.16000 0.16722 0.16944 Eigenvalues --- 0.18504 0.33187 0.42878 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda=-2.84222850D-06 EMin= 1.34705632D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00118256 RMS(Int)= 0.00000246 Iteration 2 RMS(Cart)= 0.00000201 RMS(Int)= 0.00000164 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000164 Iteration 1 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000006 ClnCor: largest displacement from symmetrization is 4.60D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93197 0.00016 0.00000 0.00053 0.00053 1.93250 R2 1.93197 0.00016 0.00000 0.00053 0.00053 1.93250 R3 3.31049 0.00047 0.00000 0.00223 0.00223 3.31272 R4 2.84088 0.00020 0.00000 0.00104 0.00104 2.84192 R5 2.84088 0.00020 0.00000 0.00104 0.00104 2.84192 R6 2.86013 0.00028 0.00000 0.00168 0.00168 2.86181 A1 1.89069 -0.00008 0.00000 -0.00174 -0.00174 1.88894 A2 2.05691 0.00004 0.00000 -0.00097 -0.00098 2.05593 A3 2.05691 0.00004 0.00000 -0.00097 -0.00098 2.05593 A4 1.77137 0.01126 0.00000 -0.00074 -0.00074 1.77063 A5 1.77137 0.01126 0.00000 -0.00074 -0.00074 1.77063 A6 2.47523 -0.04518 0.00000 0.00000 0.00000 2.47523 A7 1.93619 -0.00001 0.00000 0.00175 0.00175 1.93794 A8 1.74309 0.01339 0.00000 0.00026 0.00026 1.74335 A9 1.74309 0.01339 0.00000 0.00026 0.00026 1.74335 D1 0.98280 -0.00353 0.00000 0.00192 0.00192 0.98472 D2 2.97980 0.00356 0.00000 0.00333 0.00333 2.98313 D3 -1.16029 0.00002 0.00000 0.00262 0.00262 -1.15767 D4 -2.97980 -0.00356 0.00000 -0.00333 -0.00333 -2.98313 D5 -0.98280 0.00353 0.00000 -0.00192 -0.00192 -0.98472 D6 1.16029 -0.00002 0.00000 -0.00262 -0.00262 1.15767 Item Value Threshold Converged? Maximum Force 0.000469 0.000450 NO RMS Force 0.000152 0.000300 YES Maximum Displacement 0.002295 0.001800 NO RMS Displacement 0.001183 0.001200 YES Predicted change in Energy=-1.397165D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.984650 0.853466 0.000000 2 1 0 -1.486168 1.181807 -0.828528 3 1 0 -1.486168 1.181807 0.828528 4 14 0 -0.399623 -0.799051 -0.000000 5 1 0 0.451654 -0.814363 -1.239652 6 1 0 0.451654 -0.814363 1.239652 7 1 0 -0.884783 -2.233637 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022637 0.000000 3 H 1.022637 1.657057 0.000000 4 Si 1.753017 2.406416 2.406416 0.000000 5 H 2.526135 2.812272 3.466586 1.503877 0.000000 6 H 2.526135 3.466586 2.812272 1.503877 2.479304 7 H 3.088718 3.565583 3.565583 1.514403 2.310226 6 7 6 H 0.000000 7 H 2.310226 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.002606 1.178269 0.000000 2 1 0 0.360584 1.655156 0.828528 3 1 0 0.360584 1.655156 -0.828528 4 14 0 -0.002606 -0.574748 -0.000000 5 1 0 -0.799970 -0.873275 1.239652 6 1 0 -0.799970 -0.873275 -1.239652 7 1 0 0.933498 -1.765179 -0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 73.3824148 12.2334352 11.6482356 Standard basis: def2SVP (5D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 37 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 57 basis functions, 97 primitive gaussians, 59 cartesian basis functions 13 alpha electrons 13 beta electrons nuclear repulsion energy 63.8305813031 Hartrees. NAtoms= 7 NActive= 7 NUniq= 5 SFac= 1.96D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Nuclear repulsion after empirical dispersion term = 63.8206311442 Hartrees. One-electron integrals computed using PRISM. 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 57 RedAO= T EigKep= 1.34D-02 NBF= 37 20 NBsUse= 57 1.00D-06 EigRej= -1.00D+00 NBFU= 37 20 Initial guess from the checkpoint file: "/scratch/x2036a10/recycle/Gau-33835.chk" B after Tr= -0.000000 0.000000 -0.000000 Rot= 1.000000 -0.000000 0.000000 0.000154 Ang= 0.02 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") Keep J ints in memory in symmetry-blocked form, NReq=29527220. LinEq1: Iter= 0 NonCon= 1 RMS=4.81D-05 Max=4.51D-04 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.99D-05 Max=2.59D-04 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.43D-05 Max=1.47D-04 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.94D-06 Max=3.77D-05 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=8.64D-07 Max=7.81D-06 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=2.09D-07 Max=1.29D-06 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.96D-08 Max=5.24D-07 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.30D-08 Max=1.23D-07 NDo= 1 LinEq1: Iter= 8 NonCon= 0 RMS=2.29D-09 Max=2.02D-08 NDo= 1 Linear equations converged to 3.382D-09 3.382D-08 after 8 iterations. Accept linear search using points 1 and 2. Minimum is close to point 2 DX= -3.40D-05 DF= 0.00D+00 DXR= 3.40D-05 DFR= 0.00D+00 which will be used. LinEq1: Iter= 0 NonCon= 1 RMS=1.49D-08 Max=1.56D-07 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.28D-08 Max=1.50D-07 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.73D-09 Max=3.40D-08 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.40D-09 Max=1.04D-08 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.55D-10 Max=3.35D-09 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.45D-11 Max=7.86D-10 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.10D-11 Max=8.44D-11 NDo= 1 LinEq1: Iter= 7 NonCon= 0 RMS=1.85D-12 Max=1.64D-11 NDo= 1 Linear equations converged to 3.824D-12 3.824D-11 after 7 iterations. SCF Done: E(RB97D3) = -347.078583436 a.u. after 3 cycles Convg = 0.4281D-11 18 Fock formations. S**2 = 0.0000 -V/T = 2.0041 2 Symmetry operations used in ECPInt. ECPInt: NShTT= 435 NPrTT= 1591 LenC2= 436 LenP2D= 1456. LDataN: DoStor=T MaxTD1= 5 Len= 102 Calling FoFJK, ICntrl= 2527 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.017019285 -0.006006661 -0.000000000 2 1 0.000003738 0.000001779 -0.000001753 3 1 0.000003738 0.000001779 0.000001753 4 14 0.036793513 -0.000686208 0.000000000 5 1 -0.000002219 0.000000500 0.000001751 6 1 -0.000002219 0.000000500 -0.000001751 7 1 -0.019777264 0.006688309 -0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.036793513 RMS 0.010037651 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.045151838 RMS 0.011334254 Search for a local minimum. Step number 2 out of a maximum of 31 on scan point 34 out of 34 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -1.40D-06 DEPred=-1.40D-06 R= 1.00D+00 TightC=F SS= 1.41D+00 RLast= 7.94D-03 DXNew= 3.1674D-01 2.3808D-02 Trust test= 1.00D+00 RLast= 7.94D-03 DXMaxT set to 1.88D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01374 0.02387 0.04961 0.06138 0.08490 Eigenvalues --- 0.10280 0.16000 0.16000 0.16725 0.16944 Eigenvalues --- 0.18557 0.32681 0.42821 0.444041000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.00000 RFO step: Lambda= 0.00000000D+00 EMin= 1.37378764D-02 Quartic linear search produced a step of -0.00661. Iteration 1 RMS(Cart)= 0.00006504 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Iteration 1 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 2.25D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.93250 0.00000 -0.00000 -0.00001 -0.00001 1.93249 R2 1.93250 0.00000 -0.00000 -0.00001 -0.00001 1.93249 R3 3.31272 0.00002 -0.00001 0.00003 0.00002 3.31274 R4 2.84192 -0.00000 -0.00001 -0.00001 -0.00002 2.84190 R5 2.84192 -0.00000 -0.00001 -0.00001 -0.00002 2.84190 R6 2.86181 0.00000 -0.00001 0.00001 -0.00000 2.86180 A1 1.88894 0.00000 0.00001 0.00006 0.00007 1.88902 A2 2.05593 0.00000 0.00001 0.00008 0.00009 2.05602 A3 2.05593 0.00000 0.00001 0.00008 0.00009 2.05602 A4 1.77063 0.01129 0.00000 -0.00002 -0.00002 1.77061 A5 1.77063 0.01129 0.00000 -0.00002 -0.00002 1.77061 A6 2.47523 -0.04515 -0.00000 0.00000 0.00000 2.47523 A7 1.93794 -0.00011 -0.00001 0.00003 0.00002 1.93796 A8 1.74335 0.01333 -0.00000 0.00002 0.00002 1.74337 A9 1.74335 0.01333 -0.00000 0.00002 0.00002 1.74337 D1 0.98472 -0.00350 -0.00001 -0.00015 -0.00017 0.98455 D2 2.98313 0.00350 -0.00002 -0.00014 -0.00016 2.98297 D3 -1.15767 -0.00000 -0.00002 -0.00015 -0.00016 -1.15783 D4 -2.98313 -0.00350 0.00002 0.00014 0.00016 -2.98297 D5 -0.98472 0.00350 0.00001 0.00015 0.00017 -0.98455 D6 1.15767 0.00000 0.00002 0.00015 0.00016 1.15783 Item Value Threshold Converged? Maximum Force 0.000019 0.000450 YES RMS Force 0.000005 0.000300 YES Maximum Displacement 0.000132 0.001800 YES RMS Displacement 0.000065 0.001200 YES Predicted change in Energy=-4.458190D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0226 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0226 -DE/DX = 0.0 ! ! R3 R(1,4) 1.753 -DE/DX = 0.0 ! ! R4 R(4,5) 1.5039 -DE/DX = 0.0 ! ! R5 R(4,6) 1.5039 -DE/DX = 0.0 ! ! R6 R(4,7) 1.5144 -DE/DX = 0.0 ! ! A1 A(2,1,3) 108.2286 -DE/DX = 0.0 ! ! A2 A(2,1,4) 117.7964 -DE/DX = 0.0 ! ! A3 A(3,1,4) 117.7964 -DE/DX = 0.0 ! ! A4 A(1,4,5) 101.4495 -DE/DX = 0.0113 ! ! A5 A(1,4,6) 101.4495 -DE/DX = 0.0113 ! ! A6 A(1,4,7) 141.82 -DE/DX = -0.0452 ! ! A7 A(5,4,6) 111.0361 -DE/DX = -0.0001 ! ! A8 A(5,4,7) 99.8866 -DE/DX = 0.0133 ! ! A9 A(6,4,7) 99.8866 -DE/DX = 0.0133 ! ! D1 D(2,1,4,5) 56.4203 -DE/DX = -0.0035 ! ! D2 D(2,1,4,6) 170.9207 -DE/DX = 0.0035 ! ! D3 D(2,1,4,7) -66.3295 -DE/DX = 0.0 ! ! D4 D(3,1,4,5) -170.9207 -DE/DX = -0.0035 ! ! D5 D(3,1,4,6) -56.4203 -DE/DX = 0.0035 ! ! D6 D(3,1,4,7) 66.3295 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- Summary of Optimized Potential Surface Scan (add -347.0 to energies): 1 2 3 4 5 Eigenvalues -- -0.04595 -0.05043 -0.05471 -0.05878 -0.06261 R1 1.02284 1.02262 1.02234 1.02201 1.02171 R2 1.02284 1.02262 1.02234 1.02201 1.02171 R3 1.84582 1.83473 1.82425 1.81463 1.80631 R4 1.48988 1.49019 1.49049 1.49088 1.49124 R5 1.48988 1.49019 1.49049 1.49088 1.49124 R6 1.51112 1.51277 1.51436 1.51539 1.51602 A1 105.56311 105.80165 105.96286 106.27068 106.55428 A2 107.45755 108.06900 108.57950 109.26750 109.95944 A3 107.45755 108.06900 108.57950 109.26750 109.95944 A4 113.23136 113.29171 113.30778 113.26675 113.16059 A5 113.23136 113.29171 113.30778 113.26675 113.16059 A6 75.82000 77.82000 79.81999 81.82000 83.82000 A7 112.60857 112.47653 112.07638 111.86664 111.67173 A8 118.35048 117.71947 117.26381 116.70069 116.15748 A9 118.35048 117.71947 117.26381 116.70069 116.15748 D1 58.52838 58.12933 58.04183 57.67160 57.33371 D2 -171.71548-172.19182-172.81818-173.55884-174.35967 D3 -56.59355 -57.03124 -57.38817 -57.94362 -58.51298 D4 171.71548 172.19182 172.81818 173.55884 174.35967 D5 -58.52838 -58.12933 -58.04183 -57.67160 -57.33371 D6 56.59355 57.03124 57.38817 57.94362 58.51298 6 7 8 9 10 Eigenvalues -- -0.06620 -0.06956 -0.07268 -0.07555 -0.07819 R1 1.02141 1.02111 1.02081 1.02051 1.02023 R2 1.02141 1.02111 1.02081 1.02051 1.02023 R3 1.79874 1.79187 1.78563 1.77998 1.77490 R4 1.49162 1.49200 1.49240 1.49280 1.49320 R5 1.49162 1.49200 1.49240 1.49280 1.49320 R6 1.51632 1.51633 1.51615 1.51578 1.51525 A1 106.84206 107.13385 107.42301 107.70825 107.98570 A2 110.66788 111.38831 112.11065 112.82984 113.53563 A3 110.66788 111.38831 112.11065 112.82984 113.53563 A4 113.01129 112.82129 112.59769 112.34607 112.06739 A5 113.01129 112.82129 112.59769 112.34607 112.06739 A6 85.82000 87.82000 89.81999 91.82000 93.82000 A7 111.48357 111.31422 111.16328 111.03068 110.91834 A8 115.62455 115.09508 114.56540 114.03243 113.49591 A9 115.62455 115.09508 114.56540 114.03243 113.49591 D1 56.98535 56.61321 56.21725 55.79321 55.34620 D2 -175.23179-176.16398-177.14158-178.15710-179.19908 D3 -59.12322 -59.77538 -60.46216 -61.18194 -61.92644 D4 175.23179 176.16398 177.14158 178.15710 179.19908 D5 -56.98535 -56.61321 -56.21725 -55.79321 -55.34620 D6 59.12322 59.77538 60.46216 61.18194 61.92644 11 12 13 14 15 Eigenvalues -- -0.08058 -0.08275 -0.08468 -0.08638 -0.08785 R1 1.01997 1.01974 1.01954 1.01938 1.01927 R2 1.01997 1.01974 1.01954 1.01938 1.01927 R3 1.77037 1.76632 1.76276 1.75966 1.75699 R4 1.49361 1.49402 1.49442 1.49482 1.49522 R5 1.49361 1.49402 1.49442 1.49482 1.49522 R6 1.51464 1.51398 1.51329 1.51261 1.51196 A1 108.24683 108.48680 108.70327 108.89002 109.04259 A2 114.21105 114.84663 115.43437 115.96038 116.41784 A3 114.21105 114.84663 115.43437 115.96038 116.41784 A4 111.76565 111.44604 111.10831 110.75339 110.38534 A5 111.76565 111.44604 111.10831 110.75339 110.38534 A6 95.82000 97.82000 99.82000 101.82000 103.82000 A7 110.82312 110.74146 110.67452 110.62057 110.57521 A8 112.95553 112.40973 111.85926 111.30533 110.74733 A9 112.95553 112.40973 111.85926 111.30533 110.74733 D1 54.89370 54.44761 54.02049 53.63735 53.31754 D2 179.75400 178.71880 177.71022 176.75349 175.86902 D3 -62.67615 -63.41679 -64.13465 -64.80458 -65.40672 D4 -179.75400-178.71880-177.71022-176.75349-175.86902 D5 -54.89370 -54.44761 -54.02049 -53.63735 -53.31754 D6 62.67615 63.41679 64.13465 64.80458 65.40672 16 17 18 19 20 Eigenvalues -- -0.08911 -0.09014 -0.09096 -0.09157 -0.09198 R1 1.01921 1.01919 1.01922 1.01929 1.01939 R2 1.01921 1.01919 1.01922 1.01929 1.01939 R3 1.75471 1.75282 1.75126 1.74998 1.74896 R4 1.49561 1.49600 1.49639 1.49678 1.49717 R5 1.49561 1.49600 1.49639 1.49678 1.49717 R6 1.51136 1.51080 1.51030 1.50987 1.50953 A1 109.16098 109.24499 109.29556 109.31710 109.31447 A2 116.80647 117.12440 117.37675 117.57481 117.72546 A3 116.80647 117.12440 117.37675 117.57481 117.72546 A4 110.00387 109.60743 109.19914 108.78060 108.34952 A5 110.00387 109.60743 109.19914 108.78060 108.34952 A6 105.82000 107.81999 109.81999 111.81999 113.81999 A7 110.53830 110.50999 110.48705 110.46891 110.45776 A8 110.18643 109.62492 109.06204 108.49712 107.93197 A9 110.18643 109.62492 109.06204 108.49712 107.93197 D1 53.07149 52.91185 52.84034 52.84558 52.91946 D2 175.06744 174.36039 173.75044 173.22807 172.78571 D3 -65.93054 -66.36388 -66.70461 -66.96317 -67.14741 D4 -175.06744-174.36039-173.75044-173.22807-172.78571 D5 -53.07149 -52.91185 -52.84034 -52.84558 -52.91946 D6 65.93054 66.36388 66.70461 66.96317 67.14741 21 22 23 24 25 Eigenvalues -- -0.09218 -0.09219 -0.09201 -0.09164 -0.09108 R1 1.01952 1.01968 1.01970 1.01986 1.02004 R2 1.01952 1.01968 1.01970 1.01986 1.02004 R3 1.74820 1.74764 1.74756 1.74726 1.74709 R4 1.49756 1.49797 1.49798 1.49838 1.49881 R5 1.49756 1.49797 1.49798 1.49838 1.49881 R6 1.50928 1.50913 1.50913 1.50909 1.50912 A1 109.29104 109.25040 109.24188 109.19679 109.14312 A2 117.83489 117.91332 117.91530 117.96815 118.00661 A3 117.83489 117.91332 117.91530 117.96815 118.00661 A4 107.90677 107.45636 107.06572 106.58897 106.10964 A5 107.90677 107.45636 107.06572 106.58897 106.10964 A6 115.81999 117.81999 119.81998 121.81997 123.81997 A7 110.45278 110.45173 110.42536 110.43743 110.45144 A8 107.36674 106.79901 106.17368 105.61088 105.04286 A9 107.36674 106.79901 106.17368 105.61088 105.04286 D1 53.05416 53.23444 53.45923 53.66437 53.88588 D2 172.41621 172.10659 171.89123 171.62855 171.40052 D3 -67.26482 -67.32949 -67.32477 -67.35354 -67.35680 D4 -172.41621-172.10659-171.89123-171.62855-171.40052 D5 -53.05416 -53.23444 -53.45923 -53.66437 -53.88588 D6 67.26482 67.32949 67.32477 67.35354 67.35680 26 27 28 29 30 Eigenvalues -- -0.09035 -0.08945 -0.08837 -0.08714 -0.08573 R1 1.02024 1.02045 1.02068 1.02117 1.02146 R2 1.02024 1.02045 1.02068 1.02117 1.02146 R3 1.74716 1.74730 1.74767 1.74870 1.74927 R4 1.49924 1.49970 1.50016 1.50113 1.50155 R5 1.49924 1.49970 1.50016 1.50113 1.50155 R6 1.50925 1.50944 1.50974 1.51063 1.51115 A1 109.08037 109.00886 108.92973 108.75331 108.63336 A2 118.01987 118.02485 118.00751 117.95229 117.93347 A3 118.01987 118.02485 118.00751 117.95229 117.93347 A4 105.61758 105.12408 104.61660 104.05724 103.55421 A5 105.61758 105.12408 104.61660 104.05724 103.55421 A6 125.81997 127.81997 129.81997 131.81999 133.81999 A7 110.47516 110.50080 110.53813 110.63114 110.69428 A8 104.47722 103.90618 103.33927 102.80042 102.21108 A9 104.47722 103.90618 103.33927 102.80042 102.21108 D1 54.13849 54.39941 54.68535 55.08143 55.36779 D2 171.22112 171.06932 170.96180 171.00270 170.96482 D3 -67.32020 -67.26564 -67.17643 -66.95793 -66.83369 D4 -171.22112-171.06932-170.96180-171.00270-170.96482 D5 -54.13849 -54.39941 -54.68535 -55.08143 -55.36779 D6 67.32020 67.26564 67.17643 66.95793 66.83369 31 32 33 34 Eigenvalues -- -0.08417 -0.08246 -0.08060 -0.07858 R1 1.02183 1.02205 1.02232 1.02264 R2 1.02183 1.02205 1.02232 1.02264 R3 1.74984 1.75084 1.75198 1.75302 R4 1.50231 1.50272 1.50322 1.50388 R5 1.50231 1.50272 1.50322 1.50388 R6 1.51194 1.51264 1.51347 1.51440 A1 108.50765 108.42705 108.33348 108.22857 A2 117.93069 117.88055 117.82721 117.79636 A3 117.93069 117.88055 117.82721 117.79636 A4 103.05163 102.51948 101.98042 101.44955 A5 103.05163 102.51948 101.98042 101.44955 A6 135.81999 137.81999 139.81999 141.81999 A7 110.75561 110.83707 110.93523 111.03605 A8 101.61798 101.04502 100.47138 99.88662 A9 101.61798 101.04502 100.47138 99.88662 D1 55.63114 55.90582 56.17876 56.42027 D2 170.91900 170.90198 170.91428 170.92072 D3 -66.72493 -66.59610 -66.45348 -66.32950 D4 -170.91900-170.90198-170.91428-170.92072 D5 -55.63114 -55.90582 -56.17876 -56.42027 D6 66.72493 66.59610 66.45348 66.32950 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.984650 0.853466 0.000000 2 1 0 -1.486168 1.181807 -0.828528 3 1 0 -1.486168 1.181807 0.828528 4 14 0 -0.399623 -0.799051 -0.000000 5 1 0 0.451654 -0.814363 -1.239652 6 1 0 0.451654 -0.814363 1.239652 7 1 0 -0.884783 -2.233637 -0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 N 0.000000 2 H 1.022637 0.000000 3 H 1.022637 1.657057 0.000000 4 Si 1.753017 2.406416 2.406416 0.000000 5 H 2.526135 2.812272 3.466586 1.503877 0.000000 6 H 2.526135 3.466586 2.812272 1.503877 2.479304 7 H 3.088718 3.565583 3.565583 1.514403 2.310226 6 7 6 H 0.000000 7 H 2.310226 0.000000 Stoichiometry H5NSi Framework group CS[SG(HNSi),X(H4)] Deg. of freedom 9 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.002606 1.178269 -0.000000 2 1 0 0.360584 1.655156 0.828528 3 1 0 0.360584 1.655156 -0.828528 4 14 0 -0.002606 -0.574748 0.000000 5 1 0 -0.799970 -0.873275 1.239652 6 1 0 -0.799970 -0.873275 -1.239652 7 1 0 0.933498 -1.765179 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 73.3824148 12.2334352 11.6482356 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') Virtual (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") The electronic state is 1-A'. Alpha occ. eigenvalues -- -65.40759 -14.00088 -5.10684 -3.52829 -3.52625 Alpha occ. eigenvalues -- -3.52565 -0.76854 -0.47820 -0.44089 -0.35925 Alpha occ. eigenvalues -- -0.28741 -0.28514 -0.22481 Alpha virt. eigenvalues -- -0.02533 0.04695 0.05416 0.08266 0.09458 Alpha virt. eigenvalues -- 0.13400 0.21481 0.30566 0.30899 0.34044 Alpha virt. eigenvalues -- 0.37534 0.46358 0.49120 0.50666 0.53129 Alpha virt. eigenvalues -- 0.56746 0.62887 0.68092 0.73046 0.80249 Alpha virt. eigenvalues -- 0.81047 0.89099 0.92930 0.96919 1.23152 Alpha virt. eigenvalues -- 1.34269 1.40873 1.44405 1.50264 1.61953 Alpha virt. eigenvalues -- 1.64071 1.65678 1.69868 1.78583 1.92487 Alpha virt. eigenvalues -- 2.00403 2.03982 2.10426 2.14895 2.49801 Alpha virt. eigenvalues -- 2.54694 2.65715 2.95429 3.20909 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 N 6.250360 0.345804 0.345804 0.448418 -0.023937 -0.023937 2 H 0.345804 0.587941 -0.020148 -0.033450 -0.001813 0.004145 3 H 0.345804 -0.020148 0.587941 -0.033450 0.004145 -0.001813 4 Si 0.448418 -0.033450 -0.033450 12.106242 0.393160 0.393160 5 H -0.023937 -0.001813 0.004145 0.393160 0.780314 -0.004965 6 H -0.023937 0.004145 -0.001813 0.393160 -0.004965 0.780314 7 H -0.008394 -0.001604 -0.001604 0.310966 -0.040929 -0.040929 7 1 N -0.008394 2 H -0.001604 3 H -0.001604 4 Si 0.310966 5 H -0.040929 6 H -0.040929 7 H 0.889634 Mulliken charges: 1 1 N -0.334117 2 H 0.119125 3 H 0.119125 4 Si 0.414954 5 H -0.105974 6 H -0.105974 7 H -0.107139 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.095867 4 Si 0.095867 Electronic spatial extent (au): = 160.1777 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.5452 Y= 1.5495 Z= -0.0000 Tot= 2.1883 Quadrupole moment (field-independent basis, Debye-Ang): XX= -23.0217 YY= -20.8369 ZZ= -21.1448 XY= 2.1388 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.3539 YY= 0.8309 ZZ= 0.5230 XY= 2.1388 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 1.2526 YYY= 13.3046 ZZZ= -0.0000 XYY= 2.1020 XXY= 3.1254 XXZ= 0.0000 XZZ= 2.5007 YZZ= 6.4658 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -45.0122 YYYY= -138.3392 ZZZZ= -52.7449 XXXY= 0.2779 XXXZ= 0.0000 YYYX= 6.9157 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -34.3540 XXZZ= -16.2741 YYZZ= -29.7918 XXYZ= -0.0000 YYXZ= 0.0000 ZZXY= 0.0299 N-N= 6.382063114421D+01 E-N=-9.508583338592D+02 KE= 3.456515652931D+02 Symmetry A' KE= 3.170436608704D+02 Symmetry A" KE= 2.860790442268D+01 1\1\GINC-NODE5665\Scan\RB97D3\def2SVP\H5N1Si1\X2036A10\23-Apr-2021\0\\ # opt=modredundant b97d3 def2svp SCF=QC\\Title Card Required\\0,1\N,-0 .9846504114,0.8534655324,0.0000000002\H,-1.486168167,1.1818068183,-0.8 285284434\H,-1.4861681717,1.1818068163,0.8285284417\Si,-0.3996232568,- 0.7990513624,-0.0000000002\H,0.4516543191,-0.8143627885,-1.2396521844\ H,0.4516543121,-0.8143627915,1.2396521889\H,-0.884783245,-2.2336371804 ,-0.0000000033\\Version=ES64L-G16RevA.03\State=1-A'\HF=-347.0459523,-3 47.0504332,-347.0547129,-347.0587756,-347.0626082,-347.0662049,-347.06 95626,-347.0726781,-347.0755523,-347.0781875,-347.080585,-347.0827468, -347.084677,-347.0863783,-347.0878534,-347.0891065,-347.0901415,-347.0 90962,-347.0915725,-347.0919778,-347.0921824,-347.0921905,-347.0920065 ,-347.0916364,-347.0910839,-347.0903534,-347.089449,-347.0883747,-347. 0871352,-347.0857337,-347.0841744,-347.0824607,-347.080596,-347.078583 4\RMSD=2.881e-12,3.634e-13,4.570e-12,6.040e-12,5.730e-12,5.495e-12,5.2 35e-12,4.936e-12,4.643e-12,4.259e-12,3.739e-12,3.208e-12,2.651e-12,2.0 50e-12,1.505e-12,1.046e-12,6.754e-13,4.337e-13,2.909e-13,1.971e-13,1.2 78e-13,4.049e-09,1.961e-12,2.042e-12,2.091e-12,2.157e-12,2.249e-12,2.3 58e-12,6.799e-09,1.522e-13,7.841e-09,7.214e-09,1.419e-13,1.266e-13\PG= CS [SG(H1N1Si1),X(H4)]\\@ THE MORE POWERFUL THE METHOD, THE MORE CATASTROPHIC THE ERRORS. -- M.D. KAMEN Job cpu time: 0 days 3 hours 37 minutes 57.6 seconds. Elapsed time: 0 days 0 hours 7 minutes 22.4 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 16 at Fri Apr 23 15:23:48 2021.